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Out of the Lab, in open air (3D) settings, the problem of Chemicals identification and 
quantification is strongly affected by propagation characteristics of chemical signal 
propagation. 
 
 
 

DISTRIBUTED CHEMICAL SENSING (WHAT & WHY) 

•Diffusion (sometimes negligible) 
•Air flows 
•Turbulence (in indoor and outdoor settings) 
•Canyon effects (in city scapes) 

 … often make the use of a single point of measurement inefficient. 
 
 
Two different approaches  in literature: 

 
a) A single, moving agent, equipped with a chemical sensors array 

 
 

b) A pervasive network of chemical sensors arrays 

 



Why Wireless?  
Wireless chemical sensing platforms are an ideal architecture for 
achieving real world distributed chemical qualitative and 
quantitative analysis capability in several real world apps: 
 
 
 
 

+ Easy to deploy & Operate 

+ Robust to Node Failures 

+ Allows Pervasive Knowledge 

+ Rapid Detection of Plumes  

 

In turn, Single moving agent is: 

-  More effective in source declaration 

-  Easier to maintain 

In theory,they can be mixed with a flock of moving agents  
 
 
 
 



WCSN Primary applications: 
 
 
 
 

Indoor/outdoor pollution Monitoring: 

•Indoor Air Quality  

•Energy Efficiency of HVAC systems 

•City pollution monitoring 

 

Safety & Security: 

Gas spills Detection 

Flammable gas Detection 

Geochemical monitoring (Volcanic fumaroles) 

Explosives Detection 

Drug factories localization 



A COMMON FRAMEWORK: 

Ideally, We aim to build: 
 

Compact-Intelligent-Cooperating-Easy-to-Deploy 
 
chemical sensing platforms capable to act as a network to 
reconstruct a 3D Chemical image for the sensed environment 

Sense… Calibrate… Cooperate… Semantic Value 

 [© King’s College London] 



A COMMON FRAMEWORK - > COMMON CHALLENGES 

In this common framework, a small number of important issues 
seems to recurrently arise: 

 
• We need Low Cost sensors, Low cost platforms to deal with numerosity 

 
• Effective Module Calibration -> (In Lab?, On Field?,Drifts?) 

 
• Calibration Transfer  -> (How to deal with sensors diversity) 

 
• Energy Efficiency  -> (Operation on Batteries) 

 
• Sensor Fusion -> (How to reach situational awareness) 



SINGLE MODULE CALIBRATION 
HOW TO TRAIN YOUR PLATFORM TO OPERATE ON FIELD 
 

The Goal: Calibration of a wireless (3G) 5 MOX based PV powered multisensor system 
for densifying air pollution monitoring network in cities.  
 
• Single analytes Calibration ? 
Interference set in! When mixed, gases affect the response of all sensors in your array. 
• Synthetic Mixtures ?  
You have no means to cope with the number of possible, unforeseeable interferents 
 
The Idea: On Field Calibration 

 

Use of a mobile spectrometers-based station to produce the GT for the statistical 

Multivariate calibration (ANN, SVR) of the multisensor system responses.  

 

 

True Concentrations 
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S. De Vito et al.; Sensors & Actuators,B Vol. 129, 1, Feb. 2008  
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SINGLE MODULE CALIBRATION: 
HOW TO TRAIN YOUR PLATFORM TO OPERATE ON FIELD 
 Outcome: 
• ANN also learns to exploit correlations among multiple sensors [Strength but also weakness] 
• Good results, very low relative error on the concentration estimation of Benzene and CO 
• Acceptable results for the concentration estimation of NOx  
• NO2 performance needs definitely to be improved 

 

Big Issues: 
 
• # of needed training samples (ten days) was too big to calibrate tenth or hundreds of 

multisensor devices  
• Sensors and Concept Drift problems become significant  after 4-6 Months 
You cannot think of moving your mobile station from device to device again to (re)calibrate. 

 S. De Vito et al.; Sensors & Actuators,B Vol. 143, 1, Dec. 2009  



DRIFT COUNTERACTION  (& DATASET REDUCTION ) 

• Sensors  Dri ft  i s  a  wel l  known problem fo r  sol id  
state  based devices…  

• Concept  dr i ft ,  often neglected ,  is  the sensor  
response var iat ion  due to  target  var iables  pdf  and 
environmental  sett ings  var iat ion  (RH,  Humidity ,  
changes  in  absolute  and relat ive  concentrat ion  of  
chemicals  and their  interferents ,  etc .)  

Drift is often tackled with recalibrations  or sensor response correction  
approaches with very interesting results.  

Both these approaches require a valuable resource: Time (Samples)! 

 

• Time to calibrate the drift correction approach 

• Time to recalibrate (when on field you need a GT generator!) 

The Idea: Exploit Semisupervised learning approaches  for sensors and 
concept drift effects reduction 



DRIFT Counteraction  (& Training Dataset reduction ) 

Semi supervised learning, based on manifold and cluster hypothesis, aims to 
exploit both  

- supervised training samples (for  achieving a l imited but well  fond knowledgeof  the 
problem) 

- Unsupervised training samples to adapt  and complete the (l imited) knowledge the 

system has gained before 

 

 
Our group applied this technique to the drift effect reduction in the previous 
setting obtaining encouraging results by using a very limited number of 
supervised calibration points (24Hrs). 

 

 

 

 
S. De Vito et al.; Accepted fo publication in IEEE Sensors 

2012 



MUTUAL  (RE)CALIBRATION 

Multiple devices could, in theory, cross re-calibrate theirselves in order to 
counter the sensors drift effects:  

 

 

 

 

When very low pollution levels are detected 
together with some favourable meteo 
conditions (T,RH,Wind speed) than baseline 
response is re-calibrated. 

The procedure helped to reduce sensor drift 
effects.  

 

 

Tsuj i ta  et  a l .  Gas sensor  network for  a i r -pol lu t ion moni tor ing,   

Sens & Act .  B ,  110,  2 ,  2005  

 

 



THE POWER BOTTLENECK (d-IAQ scenario) 

 

The development of WCSN is currently hampered by technological 
limits on solid state sensors power management. 

e.g: Most commercially  MOX sensors consumes up to 400mW in their operating 
phase, their use is totally prevented in battery operated  e-noses 

Solutions: 
 
a) Develop (RT/LT) operating sensors with good sensitivity and low LOD  
b) Operate MOX with extremely low power Temp management cycles (Flammini et al,2007) 

 

However, even when goal is reached, transmission power needs limit the operative life  
of continuously sampling motes (safety or security critical applications). 
 
Sensor censoring strategies have to be developed in order to solve this issue. 
 

Censoring = Eliminate uninformative data transmission 



Use of low power sensors: RT Operating Polymer/CB Arrays 
TinyNose (patent pending) 

 

Apart from high LOD and instabilities, we wanted to focus on unuseful information transfer…. 

Base Station 

Data processing 

e-nose 

Data Sink 

S. De Vito et al. IEEE Sensors Conference, 2008 



Classificator 

Regressor 

Ethanol 

Regressor 

Acetic Acid 

Regressor 

Mixture 

On Board intelligence 

Base Station 

e-nose 

Data Sink 

On Board Intelligence for Sensor Censoring  

The problem: Recognize uninformative data acquisitions (low concentrations of relevant 

pollutant or dangerous gas) in presence of interferents in a continuous monitoring 

scenario 

Experimental Setting: 

 
•Two mock Pollutants (Acetic Acid, Ethanol) 

•In lab calibration of TinyNose equipped with 

•On-Board ANN  sw component (NesC). 

•Threshold level for Ethanol = 100ppm (/2000ppm) 

•p=0.01 probability of positive event  

 

 

S. De Vito et al. IEEE Sensors Journal, Apr. 2011 

 

0.66 0.68 0.7 0.72 0.74 0.76 0.78
0

5

10

15

20

25

Time [s]

C
ur

re
nt

 [m
A

]

Corrente assorbita dal TelosB in fase di acquisizione da tutti i sensori e trasmissione dei dati

112 ms 

44 ms 

37 ms 

68 ms 

Trasmission phase Acquisition phase 

7 ms 

Radio Wakeup 

Results: 

 
•Computational footprint tradeoff (2.5mAx25ms) 

•1% False Positive rate 

•Extension of lifetime from 47days (1Hz sample f) to 113 days 



SENSOR FUSION 

The amount of data produced can be confusing, you have to 
extract the semantic content you want form the continuous 
data stream: 
a) Concentration of pollutants on a 2D citymap for urban 

planning purposes 
b) Location of a (moving) source of flammable gases or a spill 
c) 3D reconstruction of air quality for energy efficient HVAC 

control in smart cities 



The architecture 

Eurosensors 2011 – Athens, Greece 

Each sensor array (4(+2) MOX sensors) has been 
assembled on a signal conditioning board, connected 
to a commercial WSN platform (Crossbow TelosB 
mote) and integrated in a compact plastic case  

Signal Conditional 

Board  

TelosB mote is a TinyOS compliant platform 
equipped with: 
 TI-MSP4300 low power µcontroller 
 CC2420 Zigbee capable  radio 
 Hamamatsu digital T/RH sensors 
 several A/D and D/A as well as digital 

I/O lines for sensors and peripheral 
connections  

Software components on-board network motes, ad 
hoc designed and developed, ensure data acquisition, 
local processing and transmission capabilities 

NesC (*) Powered by: e 

e-nose 

(*) 

At the data sink, a java based 
component performs data logging and 
rebroadcasting features towards 
remote monitoring GUIs while ad hoc 
developed software components 
provides the sensor fusion capabilities 

PC - Data Sink 



SENSOR FUSION 

Indoor 3D Reconstruction with  Kernel-DM Algorithm  (Reggente et al., 2010)  
Originally developed for moving robotic agents,  reconstruct the 3D 
distribution by weigthting  local readings with 3D RBF. Can cope with air flows. 

 
 
 
 
We derived a WCSN formulation for intelligent w-noses. in wich: 
 
Every node should be capable of local estimations 
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The RBF parameters can be tuned with an unsupervised mutual cross-validation 
approach that can be iterated 



 
 
3D Reconstruction occurs at Datasink  

Each w-nose was calibrated 
(in lab) towards the target 
analytes (in mixture). An 
ANN component was 
embedded. 

W-noses  were deployed  in a glass box 
simulating a 3D ambient. A VOC  mixture 
is let evaporate within the box. 

 

Sensors cross calibrate their Kernel 
parameters (simulated @ datasink) 
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Istantaneous 3D Ethanol (right) and Acetic Acid (left) concentration images (computed 
@datasink) using a 4 w-nose deployment in the glass box experimental setup.  
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CONCLUSIONS 

On field WCSN for air quality monitoring: several issue to solve: 

 

Information processing is crucial in many ways 

 

Computational intelligence techniques may help to 

 

- Achieve more precise Multivariate Calibration  

 

- Reduce Drift problems with adaptive strategies  

 

- Extending Module Lifetime (if  operating on batteries) 

 

- Reconstruct the pollutant distribution map   
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WIRELESS CHEMICAL SENSING  MODULES:  

From Custom Solutions to  

Technologies Integration 


