

Standards for AQC Sensors creating a more Healthy Environment

AIAI 2012

8th Artificial Intelligence Applications and Innovations conference

ISQL 2012

3rd Intelligent Systems for Quality of Life information services workshop

29 Sept 2012

Professor Ingrid Bryntse

Senior Scientist, SenseAir AB

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

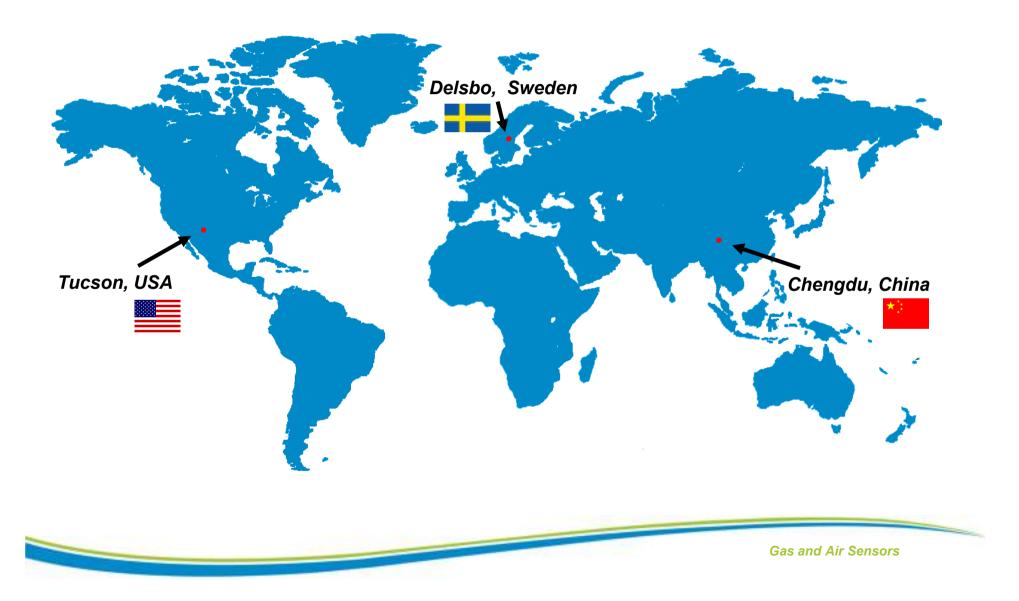
Gas and Air Sensors

- * SenseAir
- * Air quality in general
- * Air quality standards today
- * COST EuNetAir WG-4
- * Benefits from better air quality

SenseAir

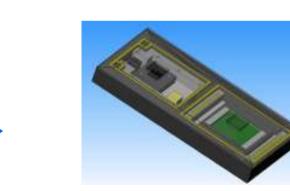
World leading within research, development and production of maintenance free NDIR gas sensors and analyzers

Large volumes of various gas sensors, > 300 000 per year



3

SenseAir, a Swedish corporate group



SenseAir uses NDIR technique

Optical waveguide + PCB 2-12 µm IR emission

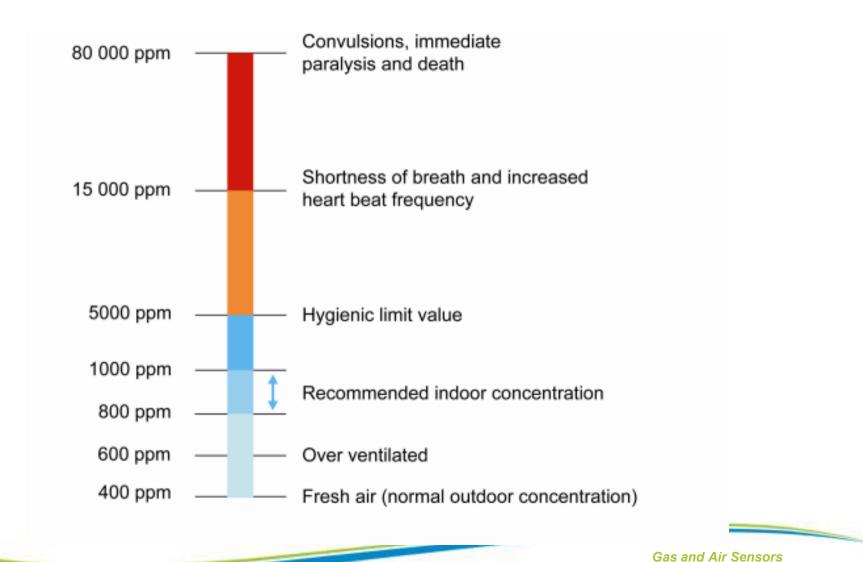
K20, product for kerosene heater

S8, the smallest CO₂ sensor in the world

Future product, made with MEMS technique

??

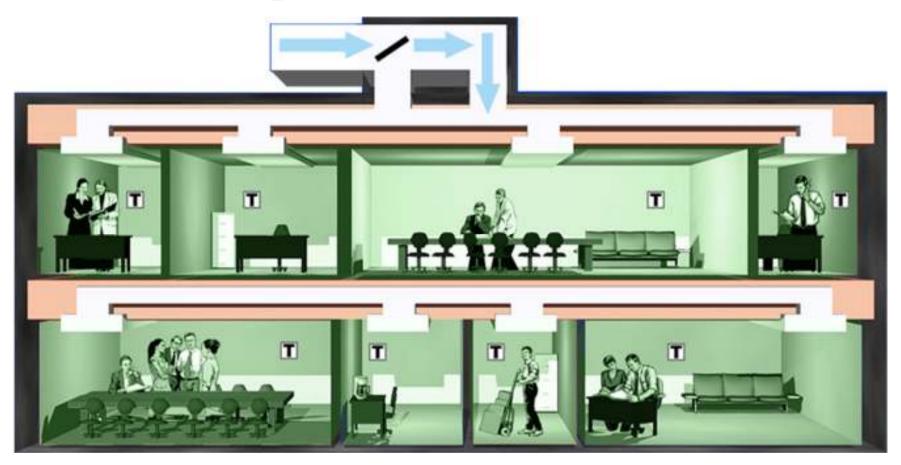
Gas and Air Sensors


Why measure in-door CO₂?

- People in a room cause a quick carbon dioxide rise
- A high CO₂ concentration is dangerous for living beings
- The ventilation rate can be coupled to CO₂ level
- SenseAir s analyzers automatically control fans or window openers so that the CO₂ level is optimized
- Levels of VOC, virus & bacteria are also decreased
- Besides a better health, CO₂ control saves a lot of energy!

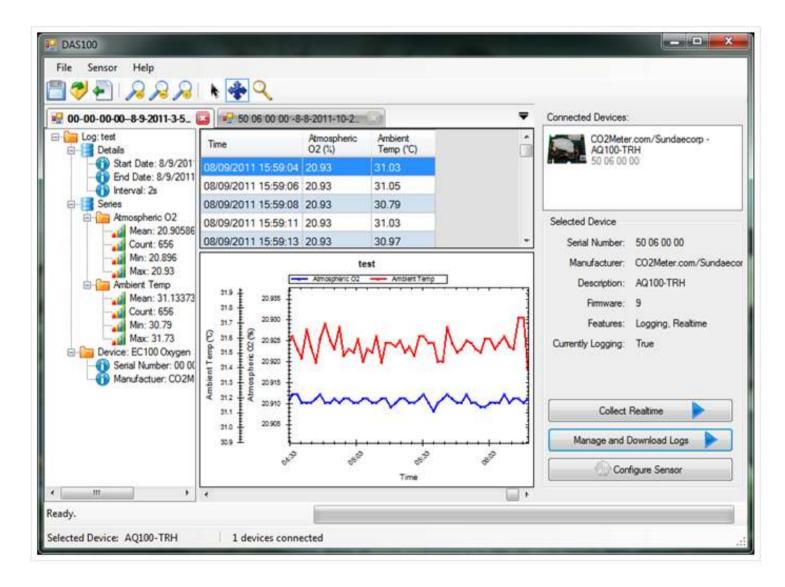
How CO₂ influences

Sense Air Fixed ventilation, based on maximum occupancy

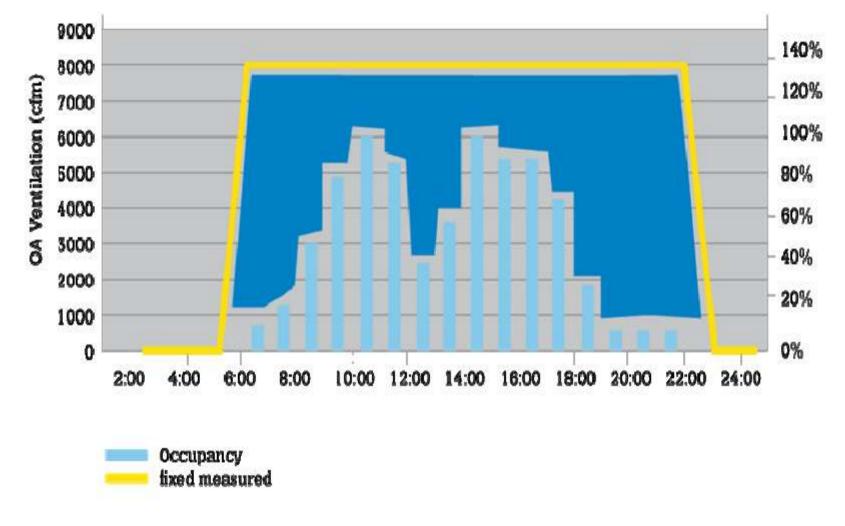


Ventilation is based on calculation of a probable maximum load of people Many rooms are overventilated - waste of energy! Some rooms need more ventilation – people are uncomfortable!

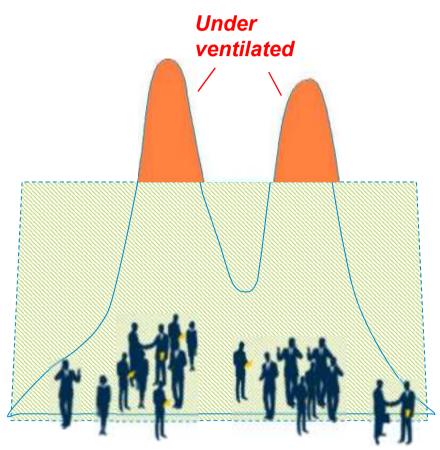
CO₂ controlled ventilation



The ventilation fits exactly for the actual number of people in every room Fresh air everywhere and large energy savings!



CO2 Meter's data acquisition package to configure sensors, view data in real-time, or manage stored logs on sensors with internal memory


The blue area corresponds to energy saving when CO2-demand ventilation is used

The red area shows that the air quality is getting poor due to too many people – if not CO2 demand ventilation is installed

Reference project

Subway, Seoul Metropolitan

Reference project

The Kremlin in Moscow has our CO₂-analyzer since 1995

Photo from 2008

Photo from 2000

Reference project

Hong Kong's international airport, 1997

In-door & Out-door Air Quality - reduced by various reasons

Species	More details	Symptoms / problems
Chemicals	CO ₂ , CO, NO _x , SO ₂ , O ₃ ,	Allergy, tiredness, poisoning
Odours	Perfume, smell, sweat	Irritation or allergy
Radon	Rn, radioactive gas	Lung cancer
Particles	PM_{10} , $PM_{2.5}$, ultrafine particles	Allergy, lung decease
Microbes	Virus, bacteria	Allergy, sickness
Pets	Cats, dogs, minipigs,	Allergy
Humidity	Water vapor	Too dry climate or mold growth
Ventilation	Air change	Noise, draught
Temperature	Around +20 C	Chilliness, tiredness

Most important out-door air species according WHO Air quality guidelines, global update 2005

Species / µg/m3	Annual mean / µg/m3	Short period mean / µg/m3	Risks
PM-2.5	10	25, 24-hour	Premature mortality, lung cancer, cardiopulmonary
PM-10	20	50, 24-hour	Premature mortality, lung cancer, cardiopulmonary
O ₃	-	100, 8-hour	Inflammatory lung effects
NO ₂	40	200, 1-hour	Children asthma, respiratory symptoms
SO ₂	-	500, 10-minute 20, 24-hour	Respiratory symptoms, mortality

Management plan 2012, EU within DG ENV,

Directorate General Environment

C.3 Industrial Emissions, Air Quality & Noise

Species	By 2010 / million tonnes	Reduction by 2020
SO ₂	8.3	18 %
NO _x	9.0	40 %
NM-VOCs	8.8	-
NH ₃	4.3	73 %
PM-10	-	41 %

Most common gas sensors for e-noses

Sensor type	Measurand, sensitivity	Advantages	Disadvantages
Polymer composites	Conductivity, ppb- ppm	Cheap, operating at room temp	Sensitive to temp and humidity
Intrinsically conducting polymers	Conductivity, ppm	Cheap, operating at room temp, senstive to polar analytes, good respons time	Sensitive to temp and humidity Baseline drift
Metal oxides	Conductivity, ppm	Cheap, fast respons & recovery time	High operating temp, sulphur poisoning
SAW	Piezoelectricity, ppm	High sensitivity, good respons time	Complex interface circuitry, difficult to reproduce
QCM	Piezoelectricity, ppm	Good batch to batch reproducibility	Complex interface circuitry, poor signal-to-noise ratio
Optical devices	Intensity / spectrum, ppb-ppm	Immune to electromagnetic interference, fast response time, cheap, light weight	Complex interface circuitry, restricted light sources
MOSFET	Threshold voltage change, 0.1 ppm	Small, low-cost sensors, CMOS integratible and reproducible	Baseline drift, need controlled environment

SAW= surface acoustic wave, QCM= quartz crystal microbalance,

MOSFET= membrane-oxide semiconductor field-effect transistor

Other gas sensors for analyzers / systems

Sensor type	Measurand, sensitivity	Advantages	Disadvantages
Combustible catalytic	Heat increase which gives a resistance change	Simple, low cost, handles combustible gases, 20-30 s response time	Can be poisoned, low response time, high power, need oxygen to work, needs recalibration
Semiconducting oxide	Resistance change from conducting gas, high conc	Simple, robust and sensitive, can handle binary gas mixtures	Nonspecific for a certain gas, affected by temp and humidity, higher maintenance costs, needs recalibration
Thermal conductivity	Heated sensing element, temp change proportional to conc, high conc of binary gas mix	Suitable for CH_4 , H_2 and gases with higher thermal conductivity than air	Water vapor interferes, NH ₃ , CO cannot be measured
Infrared gas detector	IR absorption, ppm	<10 s respons time, low power, small, functions in various temperatures and pressures	Cannot detect nonpolar molecules such as H ₂ , high initial purchase cost, humidity might disturb
Electrochemical	Electrode potential change, 0.02 ppm – 50 ppm	Compact, very low power, excellent linearity, 30-60 s respons time, measures toxic gases: CO, H_2S , Cl_2 , SO_2 etc	Oxygen must be present, affected by temp and humidity
"Chemcasette"	Colorimetry / photodetector	Fast, leaves physical evidence	Gas and Air Sensors

F

Examples of existing standards.....

NO/NO ₂ /NO _x	Nitrogen oxides	Chemical luminescence	SS-EN 14181 CEN/TC 264 CEN/TS 14793	10% of values in mg/m ³ dry NO ₂ gas (273 K och 101,3 kPa).	
CH₄	Methane	Gas chromatography	SS-EN 14181	0-1500 mg/m ³	
Odours		Olfactometry Determination of Odour Intensity	CEN 1995 VDI 3882 Part 1 (VDI, 1992) NVN 2820 March 1995 CEN TC264/WG2 1995		
	Workplace atmospheres - Electrical apparatus used for the direct detection and direct concentration measurement of toxic gases and vapours - Part 4: Guide for selection, installation, use and maintenance		EN-45544-4:1999		
Aerosols with ultrafine particles	Various arenes benspyren, antracene aso		SS-EN 15980:2011 SS-EN- ISO 28439:2011		

Sec.

Example, ASHRAE Green Building Standards

All CO₂ sensors used for Demand Control Ventilation, DCV must meet the following requirements:

Spaces with CO_2 sensors leading to a central CO_2 monitoring station shall have one sensor for every 10,000 sq ft of floor space and shall be located in the room between 3 and 6 feet (1 - 2 m) above the floor

CO₂ Sensors must be accurate to ±50 ppm at 1000 ppm

Outdoor air CO₂ concentrations shall be determined by one of the following:

- Outdoor Air CO₂ concentrations shall be dynamically measured using a CO₂ sensor located in the path of the outdoor air intake
- When documented statistical data are available on the local ambient CO₂ concentrations, a fixed value typical of the location where the building is located shall be allowed in lieu of an outdoor sensor

Occupant CO₂ generation rate assumptions shall be shown in the design documents

WG4 Protocols and Standardisation Methods

Leader (Coordinator) Prof. Ingrid Bryntse, SenseAir AB, Sweden Vice-Chair Dr. Nicolas Moser, E2V Microsensors SA, Switzerland

WG 4.1 Protocols, standards and methods for AQC by analyzers/instruments (no-sensors) technologies Dr. Grisa Mocnik, Aerosol doo, Slovenia

WG 4.2 Protocols, standards and methods for AQC by sensors (no-analyzers) technologies

Dr. Anne-Claude Romain, Universitè de Liège, Belgium

WG 4.3 Benchmarking of new products and market of commercial AQC sensors

Dr. John Saffell, Alphasense Ltd - UK

Gas and Air Sensors

Plans within COST EuNetAir WG-4, 2013-2016

Focus on the most important species among gases, odours & particles

Check most useful sensor / analyzer technique for measurements & calibration in cooperation with certified laboratories

Evaluate present standards, suggest new variants or changes

Communicate with COST members and European Union

European standards concerning: concentration interval / limits accuracy / linearity temperature span pressure variations humidity influence interactions from other gases allowed sensor drifting response time calibration procedures sensor energy consumption impact on society

Gas sensor standards

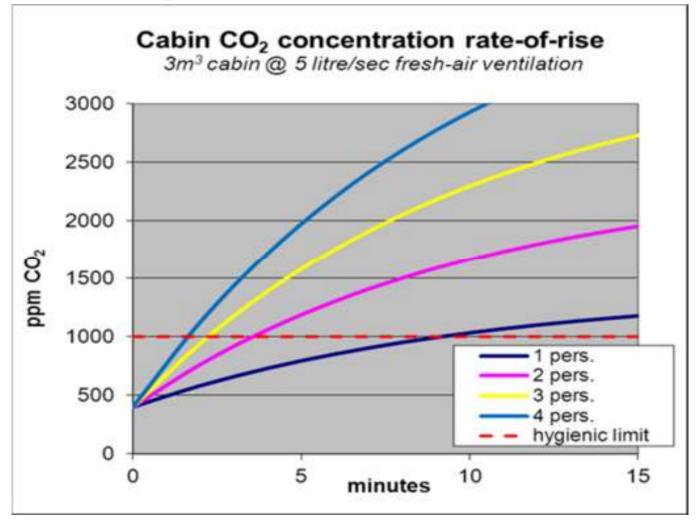
General standard for each gas / specie and if possible:

Standards for certain common applications, for example:

Ventilation Mining Automotive Special industries Agriculture Hospitals Waste water treatment

.

Four examples of what we - all of us - can gain if new standards are fully implemented in Europe


1. CO₂ appplications and benefits

CO ₂	Application	Benefits
Ventilation	Private houses, vehicles	Reducing greenhouse gases, lower energy costs, higher comfort, less virus & bacteria etc
Safety	Industries, restaurants	Less death injuries, less fires
Safety	Kerosene heaters	Less death injuries
Capnography	Intensive care at hospital	Less death, quicker recovery
Farming	Greenhouses, chicken hatcheries	Better production control, lower costs, higher yield

Gas and Air Sensors

CO₂ concentration in a car cabin

Despite ventilation the hygienic threshold is rapidly overcome in a full car

CO₂ influences our decision making ability and productivity

New study*

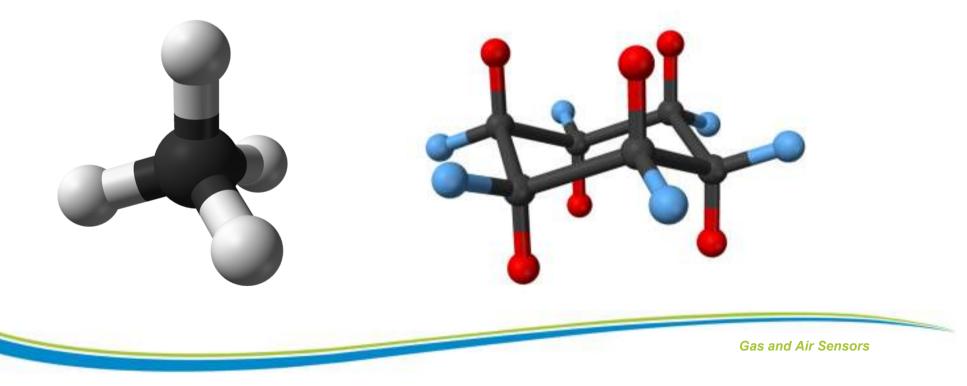
22 persons, 18-35 years old:

Decision testing ability was tested at three different CO₂ concentrations:

600 ppm, 1000 ppm and 2500 ppm.

All other parameters were kept constant.

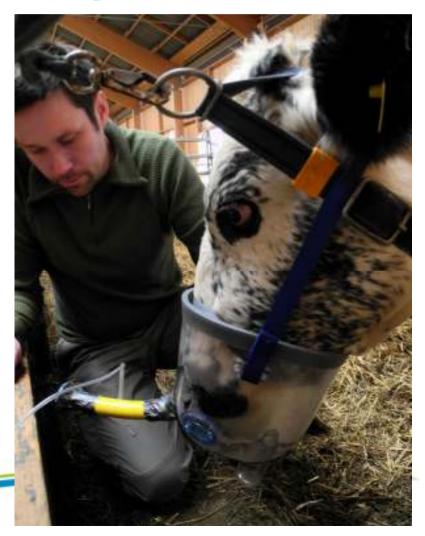
A CO₂ level >2500 ppm decreased the ability to draw conclusions and to think strategically. These levels are common in office buildings.


*Usha Satish, William J. Fisk, Mark J. Mendell, Krishnamurthy Shekhar, Lisa B. Cleckner, and Kailing Teng, **Indoor Air 2011, Austin, Texas**

2. Hydrocarbons, applications and benefits

HC, hydrocarbons	Application	Benefits
Safety alarm	Burners / kitchen appliances in private homes	Less death injuries, less explosions or fires
Safety alarm	Mining	Less death injuries
Fuel analysis	Gasoline – engine optimising	Lower energy costs

Environmental sensors

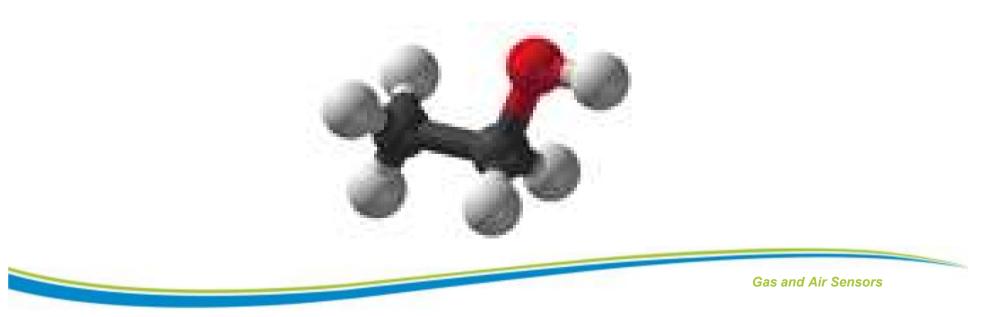

Vinnova project together with SLU & JTI 2010-2012

Henrik Rödjegård, SenseAir

Dinitrogen oxide and methane is measured in soil and cow "out-breath"

Soil Measurement System

Vinnova project with India 2008-2010 Hans Olofsson, SenseAir The variation of CO₂ in soil is monitored



Freons, other defrigerants	Application	Benefits
Freezer systems	Industries, shops, private homes	Reducing greenhouse and ozone depleting gases, lower costs for refilling or destroyed food
Safety alarms	Industries, service personel	Lower risk of injuries or death
	CFC Molecules	

4. Alcohol, applications and benefits

EtOH, ethanol	Application	Benefits
Safety	Cars, aeroplanes, other vehicles	Less dead or damaged people, lower costs caused by drunk driving
Monitoring / safety lock	Certain classified sites	Prevent accidents caused by drunk employees at job
Healthcare	Ambulance transport	Better care and quicker recovery of patients

Death injuries due to alcohol

Thousands of road traffic deaths in EU could be prevented every year if alcohol detection devices were used in all vehicles

New European Standards give a Healthy Environment and Save Costs

SenseAir AB Stationsgatan 12 SE - 820 60 Delsbo

Sweden

Thank You!

Telephone: +46-(0)653 - 71 77 70 E-mail: senseair@senseair.com Home page: www.senseair.com

Gas and Air Sensors