European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir* COST Action TD1105

Focus Group Meeting on

Data Analysis of Aveiro Air Quality Sensors Intercomparison

WHO Collaborating Centre (CC) for Air Quality Management and Air Pollution Control - Federal Environment Agency (FEA)

Berlin, Germany, 17 April 2015

Focus group goals and Multivariate calibration

Saverio De Vito

MC Substitute, WG Member, SIG Member **ENEA/ Italy**

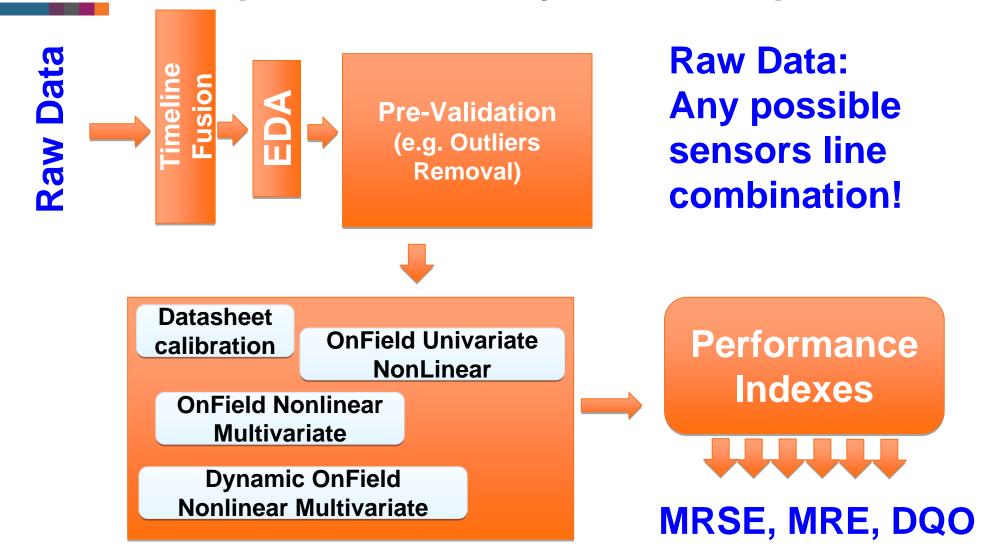
Scientific context and objectives

General Objectives: What we can achieve?

-Performance based comparison of sensor technologies and family across different multisensor devices

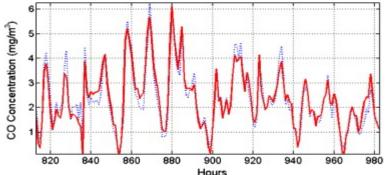
-Performance based comparison of calibration techniques across different multisensor devices

-Holistic assessment of technology readiness across different multisensor devices (wrt DQO)


These assessments are long sought by the scientific and technical community since they can only be achieved with:

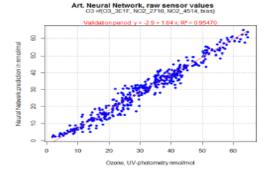
A dataset encompassing several etherogeneous multisensor devices measured together in-field across several days.

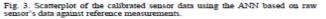
The Aveiro dataset is a significant value for the EuNetAir Community!


Proposed data analysis roadmap:

Recent achievements

Several works by our group indicate that machine learning based multivariate non linear calibration with on field data is a feasible way to reduce sensor cross sensitivities and stability issues with a limited number of training data.




From 7 days (De Vito et al, S&A,b 2009) to 1 day of training data (De Vito et al., IEEE Sensors, 2012) with target instantaneous MRE in the 20%

According to Spinelle et al. from JRC, this technique emerge as the best performing one:

EU Directive DQO Reached!

Input	Intercept	Slope	R ²	RMSE
Raw data	-2.9	1.04	0.95	64.0
Standardized data	-3.9	1.07	0.96	64.8
Calibrated data (MLR)	1.5	0.99	0.95	60.7

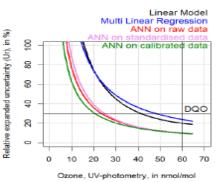
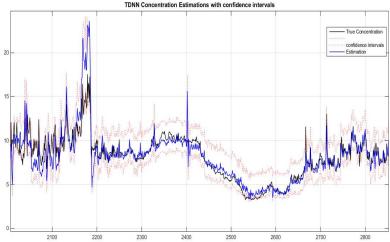
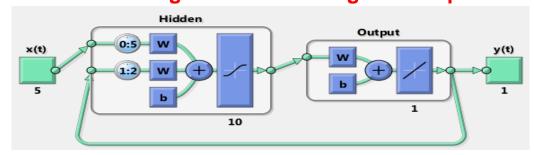


Fig. 4. Relative expanded uncertainty of the estimated values versus reference data as a function of the level of O_3 for the five calibration models.


EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Recent achievements



Recently we started tackling dynamic issues for on-the field deployed, street level or mobile deployments:

ECSensors with Ts=20sec Inputs: NO,NO_2,O_3,RH,T sensor responses Output: NO_2 concentration Neural Auto regressive with exogenous inputs

1 week training test , 1 week validation test , 3 weeks test set. Hyper parameter search space HN=[3,5,10]; 30 repetitions for each HN value, best avg reported.

Static FFNN	TDNN	NARX	
1.74 (0.20) ppb	<u>1.48 (0.13) ppb</u>	1.50 (0.13) ppb	

* In cooperation with CAS-Dept. Of Chemistry- University of Cambridge

DESCRIPTION of Sensors Database to be Used

- The data base structure:
 - Multiple XLS or csv tables (one x each MSD) with sensor data
 - Multisensor device descriptions in terms of adopted sensors and their technology (further details on multisensor device technology if possible)
- Table structure:
 - Raw sensor data
 - Datasheet calibration (if any)
 - Target gases groundtruth as recorded by conventional analyzers
 - Environmental data RH,T, WS (maybe WD)
 - Timing of the measurements
- Information on groundtruth analyzer (sensitivity, MSRE, etc.)
- Target Gases: All available EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

CONCLUSIONS

- The final goal of your approach for sensors database:
 - Performance based calibration methodology comparisons and technology readiness evaluation
 - Focus on
 - Near-Real time concentration assessments
 - Nonlinear (dynamic) multivariate calibration (from machine learning field)
- Highlight the <u>expected achievements</u> and the open problems
 - Performance goal: less than 20% MRE on instantaneous measurements
 - Reduction of cross sensitivity, non linearity, limited responsiveness issues
 - Calibration performance over multiple instance of the same sensor array (?)
 - Calibration stability over time (not possible on long term due to db limitations)

