OPENSENSE: CITY-SCALE AIR QUALITY MONITORING WITH WIRELESS SENSOR NODES

D. Hasenfratz, O. Saukh, C. Walser, C. Hueglin, M. Fierz, Lothar Thiele

Computer Engineering and Networks Laboratory ETH Zurich, Switzerland

> 18.12.2013 COST Action TD1105, Cambridge, UK

fürs Trommelf

 $|\boldsymbol{\mathcal{U}}|$

Fachhochschule Nordwestschweiz

.

Urban Air Quality

The New York Times

	DU3IIIC33 REUTERS									
WORLD	U.S.	N.Y. / REGION	BUSINESS	TECHNOLO	GY SCIE	NCE HE	ALTH	SPORTS	OPINION	9
			Search	International	DealBook	Markets	Econom	y Energ	y Media	P

Rucinoce WITH

Bulgaria's Air Is Dirtiest in Europe, Study Finds, Followed by Poland

- Major concern in many cities worldwide
- Responsible for respiratory and cardiovascular illnesses

Air Pollution Monitoring

- Static measurement networks operated by national authorities
- Measurements are highly reliable and very accurate
- High acquisition and maintenance costs limit number of installations

NABEL station in Zurich, Switzerland

Air Pollution Maps

• Today: Limited spatial or temporal resolution

Static measurement network

Fine particle pollution map

Goal of OpenSense: Increase spatio-temporal resolution

City-wide coverage

Fine-grained pollution map

Mobile Sensor Nodes

- Sensors: ozone, carbon monoxide, ultrafine particles, temperature, humidity
- Location: GPS
- Communication: GSM (cellular network)
- Interfaces:
 USB, analog/digital
- Power supply: external (streetcar)

Air quality sensor node

Deployments

• Static deployment

On top of a static measurement station

- Testing new sensors: stability, accuracy
- Long-term sensor tests

Mobile deployment

On top of streetcars in the city of Zurich

- 10 nodes
- 20 hours per day in operation
- 2 years of measurements
- > 50 million data points

Deployments

• Static deployment

On top of a static measurement station

- Testing new sensors: stability, accuracy
- Long-term sensor tests

• Mobile deployment

On top of streetcars in the city of Zurich

- 10 nodes
- 20 hours per day in operation
- 2 years of measurements
- > 50 million data points

Mobile Sensor Network

- 10 sensor nodes on top of 10 streetcars
- Streetcars are not bounded to specific tracks

Sensor nodes are installed on top of streetcars

Measurement coverage

Monitoring Ultrafine Particles (UFPs)

- Particles with a diameter < 100nm
- Most countries have mass emission limits for particulate matter PM₁₀ and PM_{2.5}, but no restrictions for UFP
- Adverse health effects of UFP most probably underestimated

Problem: Lack of spatially resolved exposure data, lack of epidemiological studies

N 3762 pt 5 ¢ 1 Size 73 pm 45%	
2126 TO THE 434	
•	
miniDiSC Diffusion Size Classifie	

UFP sensor (MiniDisc)

UFP Data Set

- 10 MiniDiscs are installed on top of 10 streetcars
 - Five installed in April 2012, five more in January 2013
 - Sampling rate of 20Hz, aggregated to one packet per 5s
 - Collected more than 40 million measurements (after filtering around 25 million remaining)

From Single Measurements to Fine-Grained Pollution Maps

Single measurements

Fine-grained pollution map

Processing steps:

Data Validation

- Has the harsh deployment setting on top of streetcars an impact on data quality?
 - Long-term unattended operating times
 - Mobility and constant vibrations
 - High temperature and humidity variations

- Good data quality is a must for the development of reliable pollution maps
- Challenge: only very sparse ground truth is available

Statistical Distribution

- UFPs are approximately log-normally distributed
- Log-normal distribution (black) with mean and standard deviation of the UFP data (gray)

 Distribution of the processed data closely follows a lognormal distribution

Comparison to High-Quality Data

- Comparison to UFPs measured by static stations of the Swiss National Air Pollution Monitoring Network (NABEL)
- Locations: urban heavy traffic and suburban

 Daily average measured UFP concentration corresponds well to the measurements of the two static stations

Developing Land-Use Regression Models to Create Pollution Maps

- Land-use regression (LUR) models widely used to assess spatial variation of air pollutants
- Use land-use and traffic characteristics (explanatory variables) to model pollution levels:
 - 1. Evaluate dependency between explanatory variables and monitored pollution levels
 - 2. Model pollution levels with the found relationships at locations without measurements but land-use data

Explanatory Variables

- Resolution: 100m x 100m (1 hectare)
- 12 variables:

Variable [unit]	Variable [unit]
Population [inhabitants/ha] Building height [floor levels/ha]	Industry [industry buildings/ha] Heating [oil and gas heatings/ha]
Terrain elevation [average m (asl)/ha]	Road type [busiest road type/ha]*
Distance to next road [m]	Distance to next large road [m] [†]
Terrain slope [average degree/ha]	Terrain aspect [average degree/ha]
Traffic volume [vehicles per day/ha]	Distance to next traffic signal [m]

*Five road types: residential, tertiary, secondary, primary, and freeway. *Road types classified as large: secondary, primary, and freeway.

Influence Factor

Every variable has an influence factor on the modeled pollution level

Pollution Maps of Ultrafine Particles

x 10⁴ 2.5

2

1.5

1

0.5

Particle concentration [particles/cm³]

Winter (January–March)

Summer (July–September)

Particle concentration [particles/cm³]

Model Performance (1/2)

- Generated **989 air quality models**:
 - 1 year of measurements: April 2012 to March 2013
 - Spatial resolution: 100m
 - Temporal resolution: yearly to semi-daily
- Metrics
 - Factor of 2 measure (FAC2): Fraction of predicted concentrations with an error less than a factor of two
 - Coefficient of determination (R²): Indicates how well predicted concentration fits measurements
 - Root-mean-square error (RMSE): Quantifies difference between predicted and measured concentrations

Model Performance (2/2)

Model Performance (2/2)

Challenges

- Lower number of measurements available to calculate the relationships to the explanatory variables
 - Limited temporal and spatial coverage of the measurements
 - Single erroneous and inaccurate measurements (e.g., outliers) have higher impact on the model

Outlook

- Increase spatial resolution (e.g., 10m resolution)
- Increase temporal resolution towards the goal of real-time pollution maps
- Analyze other pollutants, such as ozone (O₃), carbon monoxide (CO), and nitrogen dioxide (NO₂)
- Extend the mobile sensor network with measurements from locations not covered by the streetcar tracks

Backup Slides

Carbon Monoxdie (CO)

• Electrochemical gas sensor from Alphasense

