European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir* COST Action TD1105

WGs and MC Meeting at Cambridge, 18-20 December 2013

Action Start date: 01/07/2012 - Action End date: 30/06/2016

Year 2: 1 July 2013 - 30 June 2014 (Ongoing Action)

Prof. Jyrki Lappalainen, WG1: Sensor Materials and Nanotchnology (Vice-Chair) University of Oulu / Finland

UNIVER

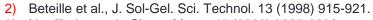
Scientific context and objectives in the Action:

- Background / Problem statement:
 - Development of new sensitive and selective gas sensor materials for environmental quality control, public safety issues, medical, automotive applications, air conditioning system setups in aircrafts, spacecrafts, vehicles, houses, etc.
- Brief reminder of MoU objectives:
 - Study the sensitivity of nanostructured MO films to harmful gases, *e.g.* NO_x, NO₂, H₂, and VOC's
 - Utilizing grain size and phase transition effects
 - Fabrication of sensors on flexible substrates PET/PEN
 substrates using printing techniques

STRUCTURAL CHARACTERIZATION AND GAS SENSING PROPERTIES OF VANADIUM OXIDE THIN FILMS

Prof. Jyrki Lappalainen, University of Oulu

M.Sc. Joni Huotari, University of Oulu Prof. Anita Lloyd Spetz, University of Oulu/Linköping University Dr. Jens Eriksson, Linköping University Dr. Robert Bjorklund, Linköping University

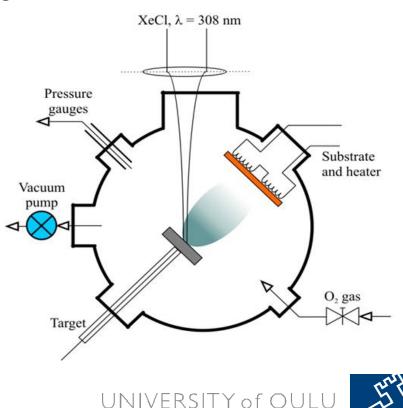

Contents

- 1. Background
- 2. Pulsed laser deposition of VO_x thin films
- 3. Characterization of the thin films
- Raman spetroscopy
- X-ray diffraction and Rietveld refinement
- Atomic force microscopy
- Scanning electron microscopy
- Transmission electron microscopy
- Gas sensing examples of the thin films
- 4. Summary

1. Background

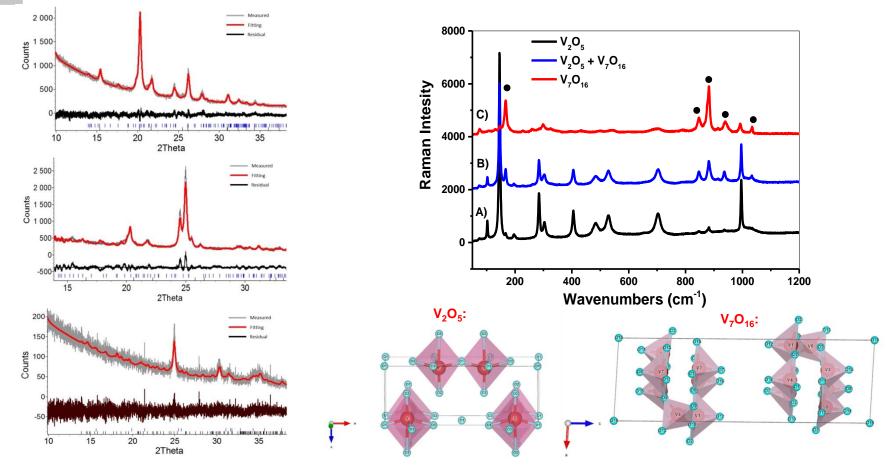
- Pulsed laser deposition (PLD) is a versatile deposition method for electroceramic thin films (e.g. PZT, WO₃).
- Vanadium oxides (VO₂, V₂O₅ etc.) is an interesting material group used in different types of applications.
- Nanostructures of V₂O₅ has been shown to be very sensitive material for ammonia (NH₃) sensing.^[1]
- The metal-insulator transition of VO₂ has been studied for optical switching.^[2]
- Vanadium oxide nanotubes (VO_x-NT) have been studied as a possible electrode material for Li⁺ batteries.^[3]
- Here we present some new structural and gas sensing studies of vanadium oxide thin films deposited by PLD

³⁾ Nordlinder et al., Chem. Mater. 15 (2003) 3227-3232.



2. Pulsed Laser Deposition of VO_x Thin Films

Pulsed laser deposition with different deposition parameters were used to manufacture vanadium oxide thin films on sapphire and silicon substrates from a pure ceramic V_2O_5 target:

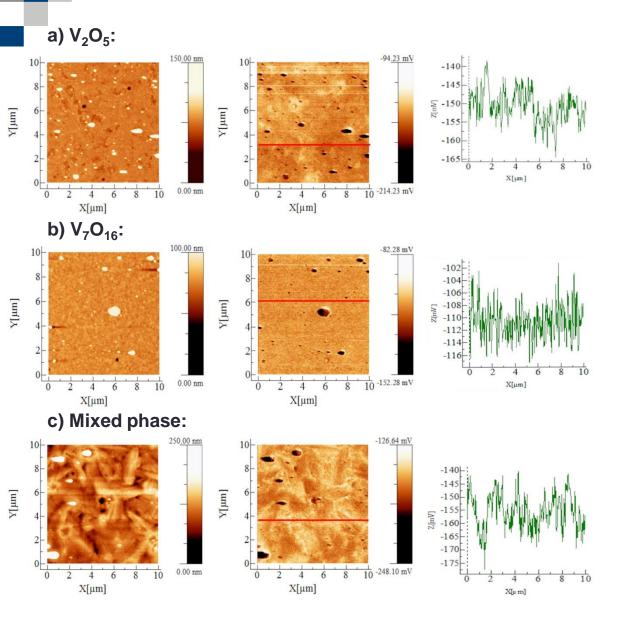

In PLD deposition many different deposition parameters can be altered to control the film structure, for example:

- The substrate T
- Gas partial pressure in the chamber
- Laser pulse density

OULUN YLIOPISTC

3. Characterization of the thin films (1/6)

XRD and Raman spectroscopy results:


-Raman spectroscopy and X-ray diffraction together with Rietveld refinement showed the existence of two phases in the thin films: orthorombic V_2O_5 phase and triclinic V_7O_{16} phase

-To our knowledge, this is the first time V₇O₁₆ phase has been shown to exist in solid-state thin-film form UNIVERSITY of OULU

OULUN YLIOPISTO

3. Characterization of the thin films (2/6)

AFM results:

•Films **a)** and **c)** showed a quite smooth surface morphology

•Film **b)** had an interesting tubular like surface and the roughest surface morphology

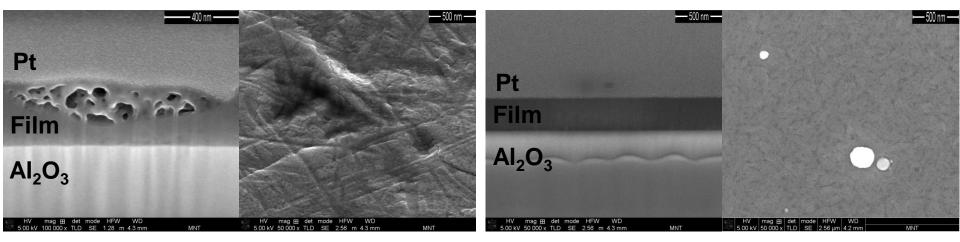
•All the sample surfaces had particulate droplets from the PLD on them (white spots)

•The surface potential ($\Delta \Phi$ of tip and film surface) proved to be different in the two phases by $\Delta \Phi \sim 40$ meV

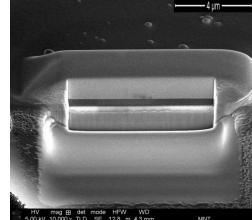
•In films **a)** and **c)** (major V_2O_5 and major V_7O_{16}) the surface potential value was relatively flat over the whole surface area

 In mixed-phase film b), the surface potential value varied strongly with surface morphology and phase structures with different work functions

OULUN YLIOPISTO

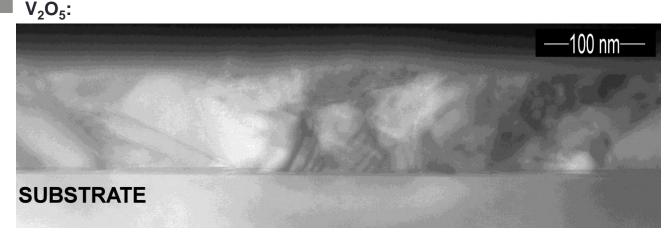

NIVERSITY of O

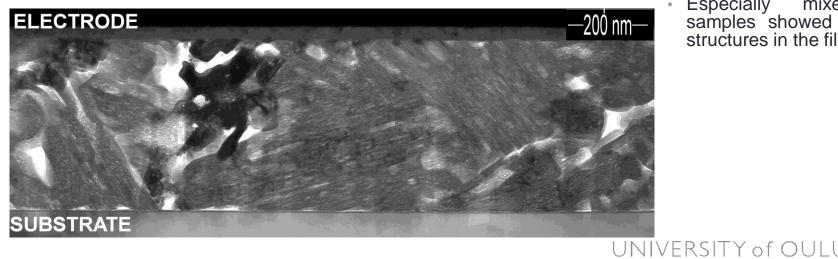
3. Characterization of the thin films (3/6) Scanning electron microscopy (SEM) results:


Mixed phase:

V₇**O**₁₆:

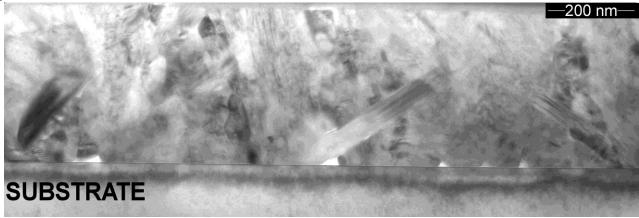
The SEM of focused ion beam etching (FIB) device was used to make the measurements



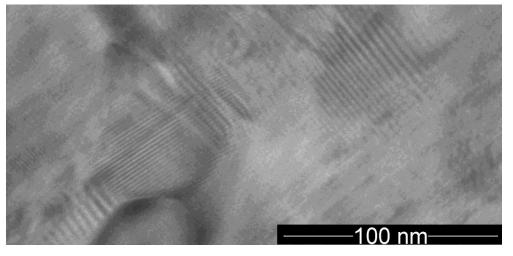


3. Characterization of the thin films (4/6) Transmission electron microscopy (TEM) results:

Mixed phase:


- Both films showed polycrystalline microstructure
- Film with a pure V_2O_5 phase had a more dense structure, film with mixed phases showed more porous structure, confirming the results already seen in SEM porous the
- Especially mixed phase samples showed tubular-like structures in the films

OULUN YLIOPISTO


3. Characterization of the thin films (5/6) Transmission electron microscopy (TEM) results:

V₇O₁₆:

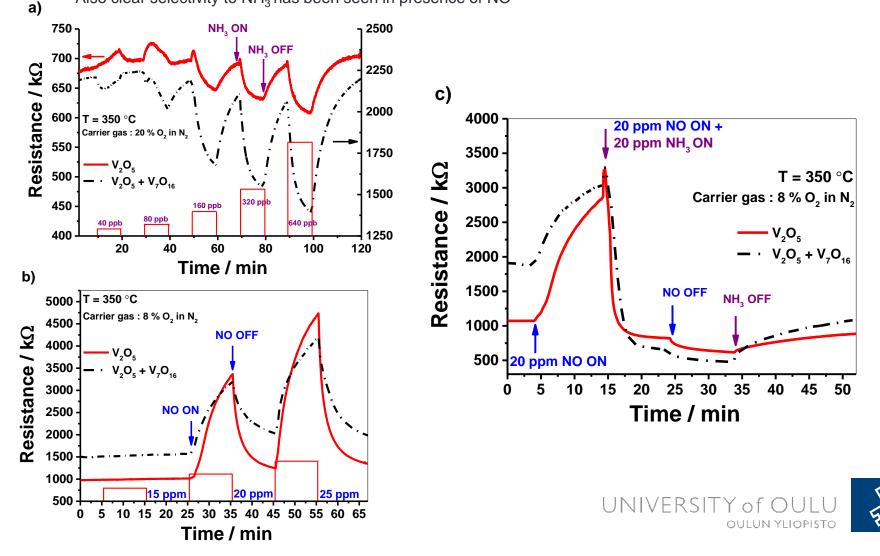
- Film with major V₇O₁₆ phase showed also a dense structure, as seen in SEM studies, aswell
- The existence of a tubularlike structure is more clear in this films, hence the tubularlike structures are believed to be a result of the existence of V₇O₁₆ phase in the film crystal structure!!

Close-up:

 Also, the two phases with different crystal structures could be clearly distuingshed from the TEM images of film with a major V₇O₁₆ phase

UNIVERSITY of OUL

OULUN YEIOPISTC



3. Characterization of the thin films (6/6)

Gas sensing examples of vanadium oxide thin films:

-The thin films have proven to be highly sensitive to ammonia gas (NH_3) ; a reducing response was seen already at ppb level!

-Also clear selectivity to NH₃ has been seen in presence of NO

4. Summary

- PLD fabricated vanadium oxide thin films were studied
- Raman spectroscopy and XRD studies together with Rietveld refinement showed existence of two phases in the films; orthorombic V_2O_5 and triclinic V_7O_{16}
- AFM surface morphology studies showed that films with either a strong V_2O_5 or V_7O_{16} phase had smoother surface than the film with a more mixed phase structure
- The surface potential studies proved the existence of two different work functions of the two different phases in the film surfaces
- SEM and TEM studies showed that the mixed phase film had much more porous microstructure than the films with more uniform phase structure
- In TEM studies interesting tubular-like structures were noticed in the films
- The films were shown to be sensitive to NH₃ already at ppb level

Suggested R&I Needs for future research to Action WGs/SIGs General Assembly

- Research directions as PRIORITIES:
- Development of mixed-phase structures of MO's for gas sensing applications!
- Development of fabrication methods of WO₃, V₂O₅, VO₂, etc. nanostructures and nanoparticles in various conditions: hightemperature - RT, fabrication in liquids, etc.
- Detailed structural characterization and physics of gas sensing mechanism.
- Utilization of phase transition effects in gas sensing process.
- Integration into low-cost mass-production processes, *e.g.* inkjet printing, GASFET's etc.

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

