

PARTICULATE MATTER DETECTION BASED ON ACOUSTIC RESONATORS FOR AIR-QUALITY MONITORING^{*}

Sanju Thomas, Marina Cole, and Julian Gardner

Microsensors & Bioelectronics Laboratory, University of Warwick, Coventry, UK

* Based on IEEE Sensors conference paper presented Nov. 2013

Outline of Talk

Introduction to particle sensing

SAW resonator based sensing

Experimental results on different particles

Conclusions on SAWR sensing

Further Work towards particle sensing

Introduction to Particle Sensing

Key facts related to Air Pollution are:

- Outdoor air pollution is a leading environmental cause of cancer deaths
- Total number of deaths caused by air pollution (indoor & outdoor) is ca. 6.3 million
- New pollution limits set for major air pollutants:
 PM 10, PM 2.5, O₃, NO₂, SO₂
- Challenges continue, while significant emission reduction have been seen in several geographical areas.

(World Health Organisation)

Target Parameter

Hazardous Particulate Matter (PM 10, PM 2.5, UFP) in air

Guidelines show that by reducing PM10 pollution from 70 to 20 ug/m³, deaths get reduced by 15%.

There is a demand for devices enabling indoor and outdoor environmental monitoring !

Indoor (PM 2.5) Outdoor (PM10, PM2.5, UFP)

Surface acoustic wave resonator based sensing

SURFACE ACOUSTIC WAVE GENERATION USING PERIODIC ELECTRODES

A periodic alternating potential creates acoustic surface wave

STANDING WAVE PATTERN FORMATION WITH ACOUSTIC REFLECTORS

WARWICK DUAL SAW RESONATOR AT 262 MHz

- Quartz substrate/Rayleigh wave
- Al or Au electrodes
- 2-port design here
- Differential read-out to remove interference/drift

Transmission curve of 262 MHz SAWR

RAYLEIGH WAVE Elliptical orbit

Differential signal of the SAW response

- Common mode noise is removed
- Response is purely due to the detected particular matter

262 MHz Dual SAWR Oscillator Circuit

BLOCK DIAGRAM OF DUAL SAWR

PHOTOGRAPH OF THE DUAL DEVICE

Amplifier and buffer circuit

SAWR based Particle Sensing

• Penetration depth - vary according to size of particle

□ Penetration depth of SAWR inversely proportional to frequency

□ Also, mass sensitivity is dependent on operating frequency

Thus, frequency dependent sensitivity tailored to particle size, allowing detection of submicron size particles

Prototype for Particulate Matter Sensing

Particles deposited on Sensing Area

Particle Type	Size (um)	Particle mass (ng)	Mass Sensitivity (Hz/ng)
Silicon	30	32	0.011
Gold	20	80	0.04
PTFE	10	1.10	4
Sucrose	6	0.044	42
Gold	0.7	0.0042	275

SEM images of Gold Particles

SEM Image of 0.7 um Gold Particles

SEM Image of 20 um Gold Particles

Experimental Results

- SAWR frequency response is fast
- Low-noise differential signal

SAWR differential signal

Results on Particle Sensing

Relationship between SAWR sensitivity $\Delta f/\Delta m$ and particle diameter for different sized particles

Conclusions

- 1. VOC SAWR sensors can be used to detect small particles
- 2. Differential measurement to remove temp. dependence
- **3.** 262 MHz SAWR Particle sensor capable of detecting picogram change in mass (sensitivity of 4 pg/Hz)
- 4. Frequency dependent sensitivity can be used to size particles in micron range
- 5. These sensors were chosen as optimal for PM2.5 detection range

Further Work on CMOS Particle Sensors

Develop CMOS oscillators to drive SAWRs

- Fully integrate SAWR chip for smart application
- Integrate FBAR/SMR as well (New EU project MSP)
- Consider MEMS based particle trapping and cleaning

Op-amp based 2port SAWR circuit

Full custom RF SiGe Chip (EU iCHEM project)

Thank you for listening

SAWR Response to Insect Pheromones in Air

1 Port Sensor vs 2 port Sensor

- Sensor response:
 - linear regime of operation
 - highly reproducible
- Pheromone used: Z9-14 Oac
- PPB sensitivity in air

• Superior Performance (higher response) for 1 port Colpitts oscillator

From IEEE CENICS 2013