

Citi-Sense-MOB

Monitoring air quality on mobile platforms

Nuria Castell, ncb@nilu.no

Citi-Sense-MOB www.citi-sense-mob.eu

Sensing Oslo... two EU co-funded projects

CITI-SENSE

Start: 01/10/2012

Duration: 48 months

Budget: 12M €

28 partners, 12 countries

Call: FP7-ENV-2012.6.5.1

Citi-Sense-MOB

Start: 01/09/2013

Duration: 24 months

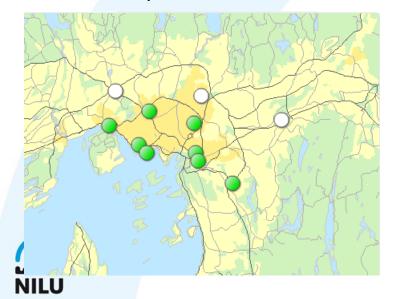
Budget: 700K € (500K EU)

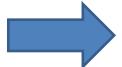
5 partners, Norway

Call: EMMIA / DG Enterprise

Pilot campaign: October 2013 – October 2014

Full deployment: October 2014 – October 2015

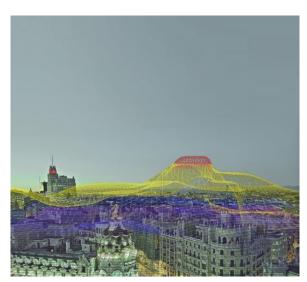

CITI-SENSE and Citi-Sense-MOB Vision


Important problems:

Quality of life in cities Health effects from traffic pollution

Decreasing air pollution Increasing quality of life

Few monitoring stations
No real-time data where people are
Absence of personalized data



Opportunities and challenges:

Small, low-cost sensors Information and Communication Tech.

Participatory Urbanism Citizens' Empowerment

Increased spatial coverage Complementary air quality data Personalized data

Our questions

Can information from sensors complement other information sources?

Will sensors lead to a greater involvement of citizens?

Can citizens provide valuable information?

What will happen when citizens can measure, sense and be aware of consequences of living in a polluted city and their own contribution to the pollution?

Our approach

COT: Citizens' observation toolbox

The COT will comprise a series of applications and services for informing the public on current environmental conditions and obtaining VGI input from them.

Personalised data

Air Quality

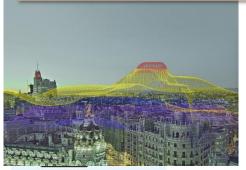
Meteorology

UV

Personal threshold limits

Alerts

Forecasting


VGI

Pollen

Real-time

Exposure

Challenge: It requires an inter-disciplinary approach, merging scientific knowledge with technological know-how and participatory governance against an inter-cultural background.

Visualizations might be helpful for making sense of data.

CITI-SENSE and Citi-Sense-MOB Impacts

Public awareness

Behavioural change

Greener Oslo

Environmental governance

Urban planning

Education

Mobility map

City management

Citizens empowerment

Public participation

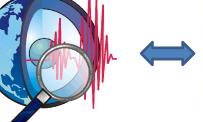
Eco-driving

Participatory urbanism

How are we going to do it?

Sensor platform NO₂NO, O₃, , CO, PM, CO₂, RH, Temp.

Ruter#


Processing raw data, fusion, modelling

Groups

Data providers AQ Models Traffic situation

Citizen Participation

Participatory Governance through Social Media

Challenges

- Sensor data quality
- Information and Communication in real-time
- Data visualisation
- Engaging with the citizens

The challenge is our goal

Combining new sensing technology, ICT platforms and participatory methods into useful products.

Condition: GEOSS interoperability

Sensor performance

- Information on performance is only beginning to be available.
- Studies show promising performance for O₃ and NO₂ sensors.
- Performance of most sensors is unknown.
- Long-term reliability is unknown.
- Real-world evaluation necessary.

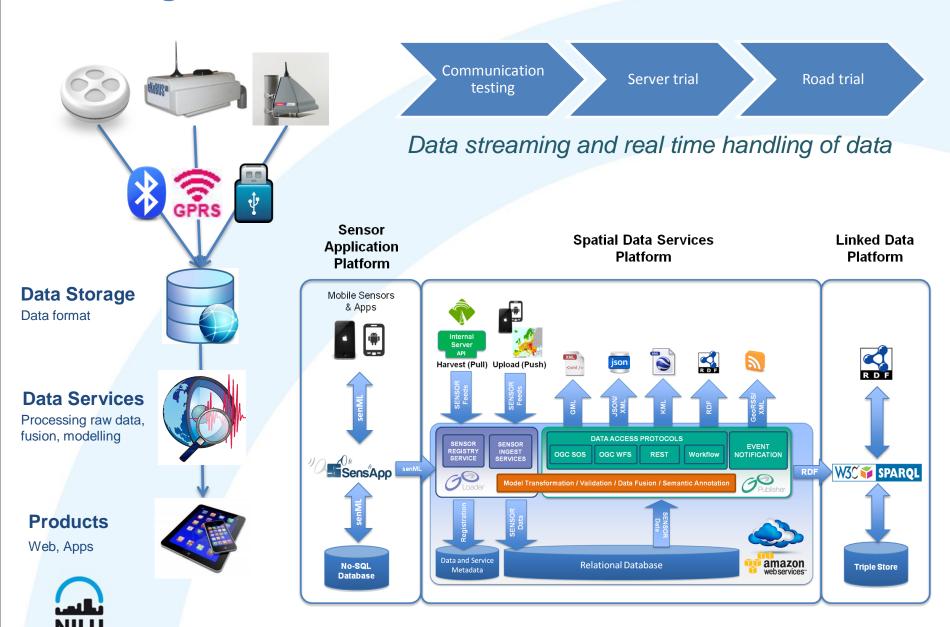
Need to assess the uncertainty

Challenge: Sensor performance and uncertainty

Validation and Calibration

Provide accurate and scientifically defendable information.
Otherwise data is useless.

Laboratory & Field



Challenge: Near real time data communication

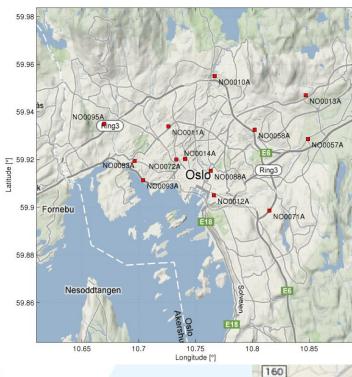
Challenge: Engaging citizens in science

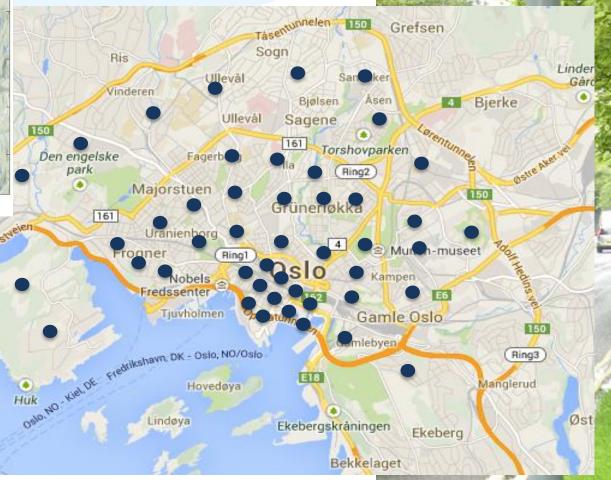
Gamification – increasing motivation in environmental issues

- Translate the engagement that happens with games to reality
- Apply game design techniques to non-game experiences to drive user behavior.

Augmented reality – enhancing current perception of reality

- Information becomes interactive
- Information can be overlaid to the real world

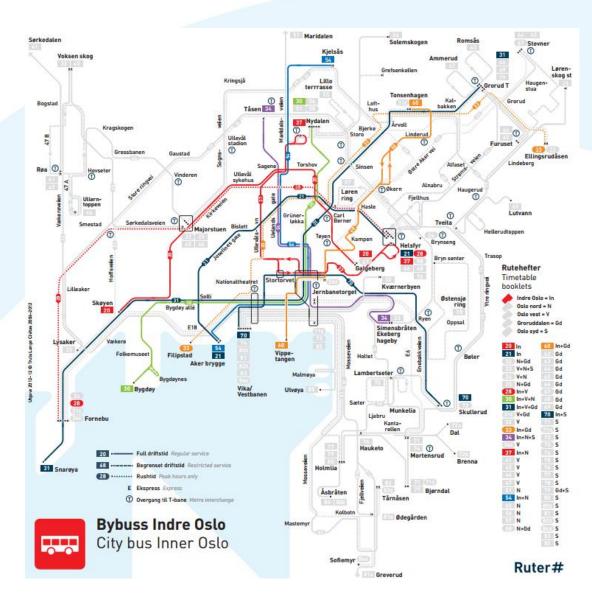



Sensing the city with static nodes

E18

aker

Information at citizen level



Sensing the city with buses

- ➤We will employ "regular" lines
- ➤ Lines 20, 21, 31, 37 and 54 are the ones that run with higher frequency.
- ➤ 20s: are ring lines that bypass the city center.
- ➤ 30s: are radial lines through the city center

Monitoring at the source

Sensing the city with bicycles

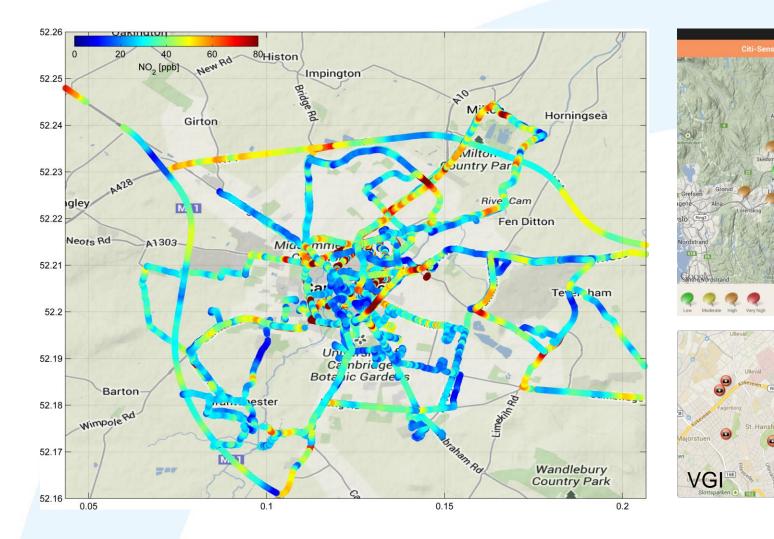
We will measure where the people cycle

Sensing the city with people

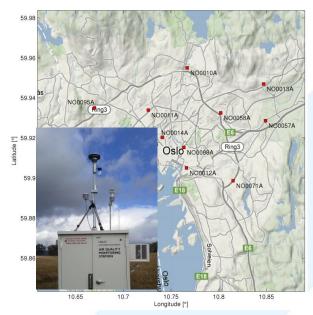
We will measure where the people walk

AQ Temp

UV



Challenge: Empower the citizens



Small, lower-cost sensors bring new challenges but along with these challenges come gigantic opportunities to improve air quality management and public health.

Opportunities

Supplementing routine ambient air monitoring networks

Monitoring personal exposure

Air quality sensors can be coupled with physiological sensors

Opportunities

Monitoring at the source

Stimulate participation and encourage the dialogue

Acknowledgements

CITI-SENSE and Citi-Sense-MOB consortium

Oslo Kommune


Ruter

NILU Team

Thank you for your attention

It is not just about making the data public, but also the public making the data

Nuria Castell, ncb@nilu.no

www.citi-sense.eu www.citi-sense-mob.eu

