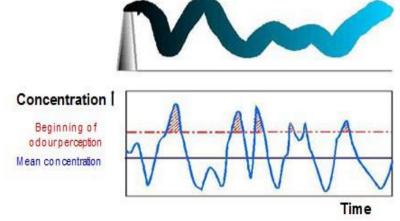
European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir* COST Action TD1105

Odour Monitoring by Sensor Technologies Cambridge, 18-20 December 2013

A-C Romain WG 4 member, Sub-WG 4.2 Leader ULg / Belgium



Context

Odour monitoring = continuous and real time measurements

Why?

Mean values of odour "concentrations" don't explain the odour annoyance

Annoyance = $FIDO(R) \rightarrow$ need continuous recorded data

Interests

- Understanding and analysing
- Making correct decisions
- Improving policies
- Reducing management risk
 COPERATION IN SCIENCE AND TECHNOLOGY

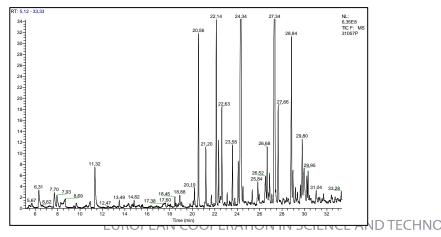
For whom

- Industrial managers
- Neighbours
- Local authorities
- Governmental authorities
- Environmental companies

Odour definition

volatile emanation which cause sensations in humans due to the

excitation of specialized organs



Chemistry

Complex mixture of hundred compounds **Single compounds** (odorant eg H₂S)

2 dimensions

- Chemical concentration
- Compound name

Perception

Annoyance

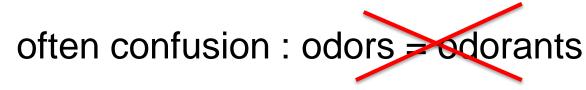
5 dimensions

Physiology

- ➢ intensity
- odour concentration
- offensiveness
- quality (rotted egg; cabbages)
- ➤ time

Odour definition

volatile emanation which cause sensations in humans due to the excitation of specialized organs



H ₂ S: 2 μg/m ³	\rightarrow	Strong odour
CH ₄ : 30%	\rightarrow	No odour
Ethanol: 5 mg/m ³	\rightarrow	Light odour

Sum of chemical concentrations \neq Sum of odour concentrations (synergetic and inhibition effects)

Odour definition→Metrology

Chemistry

Physiology

<u>Analytical instruments</u> chemical analysis (GC-MS; GC-MS-O, FTIR; ...)

<u>Sensor technologies</u> selective sensors (specific? ☺) optical or chemical 1 sensor, on chip or multi sensors array

Outputs chemical concentration (µg/m³) ≠ odour information

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

<u>Sensorial analysis</u> dynamic olfactometry, complaints survey, panellists, ...

Senso-instrumental technologies

"electronic nose" (Artificial Olfactory System AOS)

Outputs Odour concentration (ou/m³), offensiveness, frequency, odour sources (compost, biogas,...)

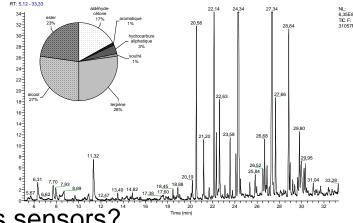
Sensor technologies in the world of odour

single odorants (extremely rare)

eg H₂S: selective sensors (electrochemical cells)

environmental off-odors = complex mixture and...
 "odour sensors" don't exist...yet !!!!...excepted our nose

Mixture of hundred compounds


- various chemical families and compounds
- large range of concentrations

No need of specificity (some selectivity)

Do you know one hundred different chemical gas sensors?

• key compounds (if complex mixture)

sometimes enough to monitor fluctuation if strong correlation odour and single compound (selective sensor enough)

Sensor technologies in the world of odour

- Each day, the chemical sensors are more "accurate", smaller, cheaper and more "intelligent "

- BUT still several limitations

 drift,
 humidity,
 high LOD,
 short lifetime,... Example: if drift, frequent calibration of the devices calibration with odours? No standards of « compost odour» or « waste odour Which "mixture" to compensate the drift?

Since 1995,

our team have tested different chemical sensors for long time odour monitoring in the field

 \rightarrow Best results with metal oxide sensors

Sensor technologies in the world of odour

✓ What we need

\circ Low cost sensors

to install several devices around the plant – to catch the emissions in the different wind directions, network-real time mapping

o Long life time

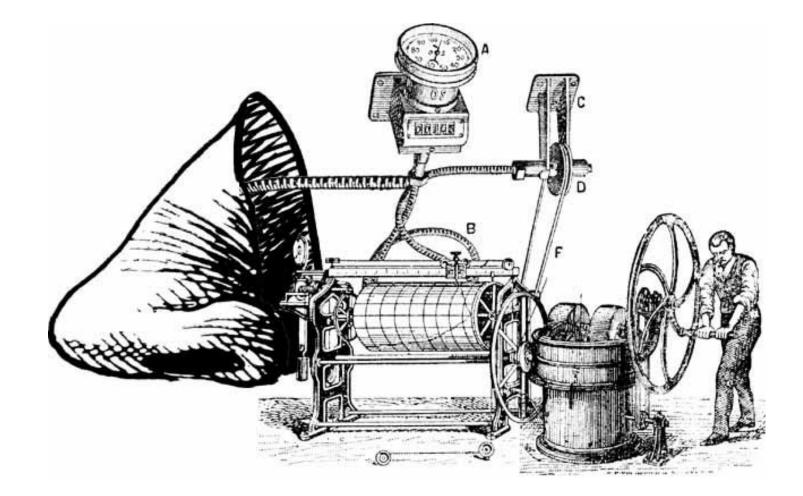
to avoid new costly development of classification and quantification models

Low drift and robustness

(sometimes) resistant to harsh environmental conditions

- Lower LOD (to avoid preconcentration devices)
- Weak power consumption/wireless sensors
- **Some selectivity** (sensor array, T Modulation) ; cross-sensitivities

🔻 What we don't need


 $_{\odot}$ Accurate output of chemical concentration

o High selectivity / specificity

Highlights

- Odour ≠ odorant
- The management of the odour pollution needs a real time monitoring of the "odour perception"
- Sensors technologies (ST) -as artificial olfactory system- have the best potentialities for this monitoring at low cost
- ST for odour monitoring no yet considered in the policies
- Currently limitations of the technology not hinder it's development
- High specificity not mandatory
- Collaboration of end-users (stakeholders) and scientists would have the power to merge the requests of each actor

Odour Monitoring by Sensor Technologies ?

Thanks for your attention

ULg-Faculty of Sciences Department of environmental sciences Environmental monitoring group Polluted atmospheres Arlon (Belgium)

ODOMETRIC s.a. Our spin off company info@odometric.be

www.campusarlon.ulg.ac.be/ 0032 63 23.08.59

acromain@ulg.ac.be

