

European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir* COST Action TD1105

A Holistic Approach in the Development and Deployment of WSN-based Applications and Systems

Second Scientific Meeting, Queens' College, University of Cambridge, 18-20 December 2013

Prof. George Papadopoulos

MC Member, Sub-WG2.3 Leader

Industrial Systems Institute / Greece

Developing and Deploying WSNs

- Wireless Sensor Networks (WSNs) constitute a rapidly evolving networking area:
 - Environmental, health, security and industrial applications

requirements regarding system performance and QoS

- Refer to different mechanisms, protocols, algorithms, HW:
 - Scheduling policies, OS, Security mechanisms
 - Routing and MAC protocols
 - Sensors, Actuators, Radio Tx/Rx

different levels of knowledge

- Employ special characteristics:
 - Constrained energy, CPU and memory resources
 - Multi-hop communication

special knowledge

Developing and Deploying WSNs

- Need for a boost to WSN widespread use:
 - User friendliness
 - Practicality
 - Efficiency

A tool integrating all appropriate features for the design of a WSN

- Evaluation, verification and guidance:
 - Critical features identification
 - Application requirements consideration
 - Design indications and suggestions

Need for profiling-modeling of SW-HW

- Long life-cycle, ease of WSN SW development:
 - Flexibility, extendibility, reusability

Desirable WSN features_Sustainability

- Low power consumption
 - Long operational lifetime for battery-powered unattended WSN nodes
- Joint optimization of connectivity and energy efficiency
 - Best-effort utilization of constrained radios in WSNs & min energy cost
- Self-calibration and self-healing
 - Recovering from failures and errors to which WSNs are prone
- Efficient data aggregation
 - Lessening the traffic load in constrained WSNs
- Programmable and reconfigurable stations
 - Allowing for long life-cycle development
- System security
 - Enabling protection of data and system operation
- Short development time
 - Short time-to-market for WSN systems
- Simple installation and maintenance procedures
 - Widespread use of WSNs

Outline

- The main contribution of the Industrial Systems Institute and the University of Patras to the ARTEMIS project WSN-DPCM focuses on:
 - Middleware level: seamless connectivity and interoperability issues over widely heterogeneous device and communication technologies,
 - Development Tool level: efficient hardware-in-the-loop simulation techniques and synthesis model evaluation modules, and
 - Planning Tool level: connectivity evaluation, critical node detection and links reduction modules

Middleware (1)

Motivation:

- Great "programming complexity gap" between development of WSN applications and appropriate handling of underlying system operation:
 - dynamic changes of the operational environment
 - different user-application requirements
 - heterogeneity
 - WSN operation specificities, resulting to special knowledge requirement
- Application development turns to be a rather low-level programming procedure, resulting to:
 - relatively decreased energy efficiency and QoS, high resource consumption, time-cost
- Lack of a unified basis of development to promote:
 - interoperability with other systems

system extendibility

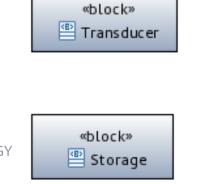
reusability of implementations

system adaptation

Middleware (2)

Main Objectives:

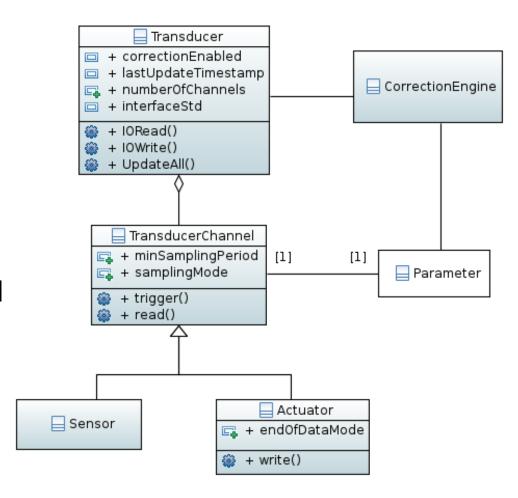
- Implement a middleware architecture which combines the state of the art in disjoint or loosely coupled research directions:
 - Adoption of a uniform MDE approach which maps well and through already existing standard notations and SW modeling constructs
 - Use of generalized high level application programming abstraction definitions
 - Deployment over a generative service/component execution framework, supporting both system and application component reconfiguration/reprogramming
 - Support of design-time and configurable run-time resource consumption awareness
 - Interoperability promotion based on mappings over existing international standards and industry driven specifications



Middleware (3)

- High-level Functional Abstractions:
 - Appear on top of lower level abstractions, which hide functionalities corresponding to platform and network interfaces:
 - CPU, memory storage, radio, network stack protocols
 - Encapsulate functionality of system or application level components:
 - Processing
 - > representing application level algorithms and logic
 - Transducer (i.e. Sensors/Actuators), Storage, Communication
 - hiding underlying heterogeneity & corresponding access mechanisms
 - Parameter
 - defining the employed data model

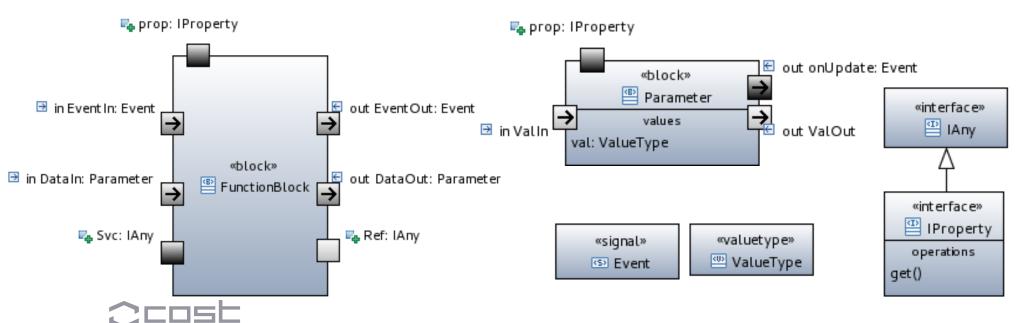
application-level abstraction



Paramet er

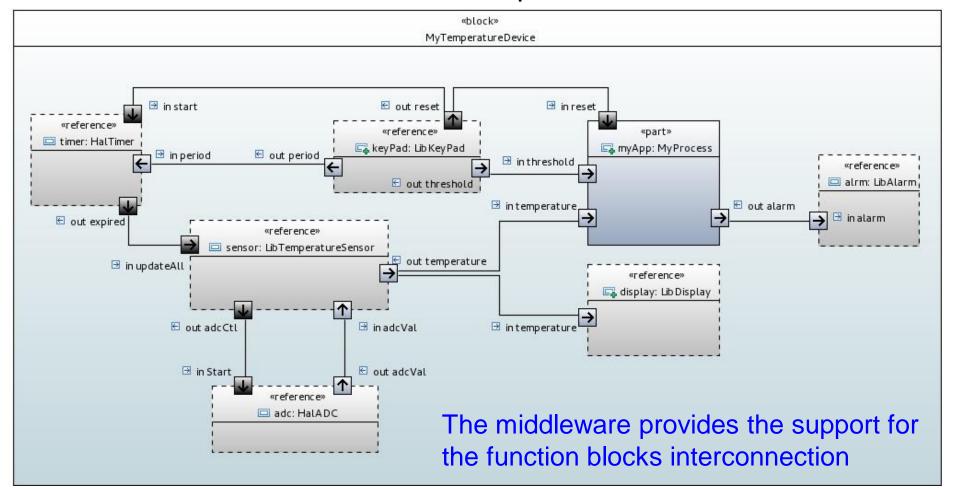
Middleware (4)

- ❖ IEEE-1451 compatible Transducer Framework:
 - Standard description of transducer's properties in a more generic/structured way
 - Definition of common commands and functions to access transducers
 - Correction engine performs further processing on measured transducer values
 - Leading to short development cycles and easy integration of WSNs

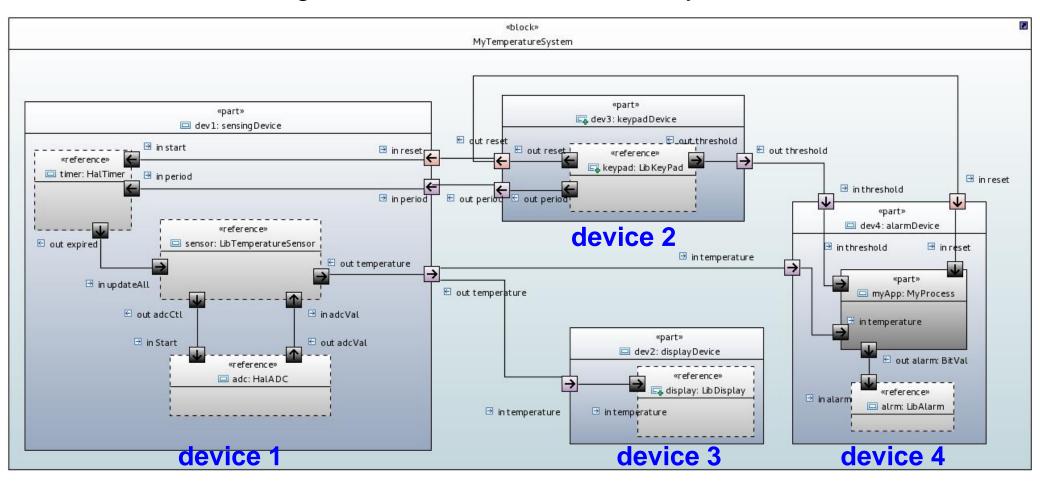


Middleware (5)

- Basic Component Framework supported by Middleware:
 - Combines CBD principles of accessing functionality implementations in composing WSN systems/applications through interface contracts:
 - IEC-61499: event-driven & data-flow process orientation
 - SysML flow ports representation


AN COOPERATION IN SCIENCE AND TECHNOLOGY

- SCA: typical synchronous method for call semantics
 - SysML ports representation of service-reference-properties features


Middleware (6)

- Application development example (temperature sensing):
 - Local node-level composition of a simple application which:
 - Displays the current temperature in a local device
 - Turns-on an alarm when the temperature exceeds a threshold

Middleware (7)

- Application development example (temperature sensing):
 - Distributed composition of the same simple application where:
 - Display, keypad, alarm and sensor parts exist on separate devices and exchange control and data seamlessly over the network

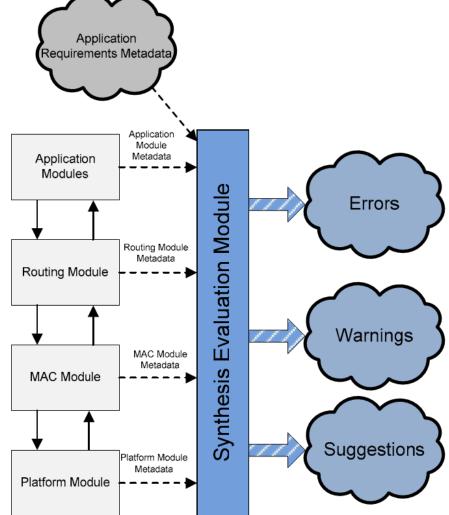
Development Tool (1)

Motivation:

- Development of WSNs has not achieved adequate widespread use because:
 - In-depth knowledge is required at various levels: OSs, protocols, platforms, programming etc.
 - There are no fully integrated environments facilitating all phases of development: Design, Develop, Test, Validate, Maintain, Extend
- WSN Simulation study suffers from various shortcomings:
 - Lack of accurate models
 - Uncertainties of hardware influence to performance/behavior
- Result: Inefficient cycles of development and unreliable power consumption estimation

Development Tool (2)

Main Objectives:


- Offer useful and practical tools enhancing the following aspects of DT for both experts and non-experts by means of Synthesis Evaluation Module (SEM)
 - Increase User-friendliness
 - Increase Efficiency
 - Decrease complexity
- Offer Hardware-in-the-Loop techniques and propose approaches enhancing simulation-based features of prominent simulators
 - Increase simulation accuracy
 - Take hardware features into consideration
 - Accurate power consumption estimation

Development Tool (3)

- Synthesis Evaluation Module (SEM) Design:
 - Application Requirements:

- Communication traffic specs
- Communication approach
- Node density
- Packet loss
- Real-Time requirements
- Properties of SW modules in different levels (i.e. network stack)
- Leading to substantial support of development process

Development Tool (4)

Synthesis Evaluation Module Impact:

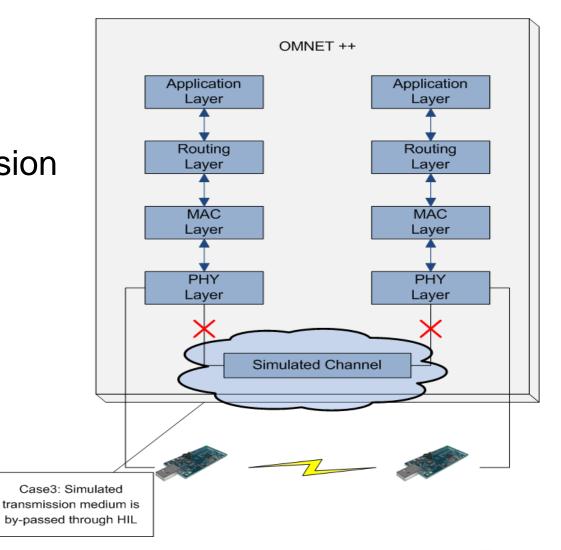
Based on the User Choices and modules' properties correlation the SEM outputs indicate:

- Errors:
 - Composition failures
 - Compatibility issues
 - Inconsistencies

- Warnings:
 - Performance degradation
 - Operation failures

- Suggestions: Indications leading to optimum SW stack
 - Concerning specific components/protocols configuration
 - Template SW synthesis based suggestion

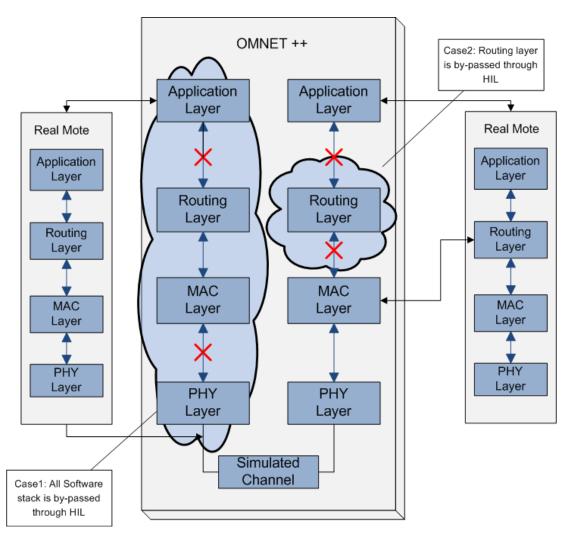
Development Tool (5)


- Hardware-in-the-Loop Rationale:
 - Integrate aspects of the a real WSN operation into dominant WSN simulation environments
 - Omnet++ is selected as one of the most prominent network simulator providing:
 - High modularity and flexibility
 - Component based architecture
 - Various WSN oriented frameworks focusing on different aspects
 - ✓ Castalia: Focusing on PHY layer mostly
 - ✓ MiXiM : Focusing communication protocols

Development Tool (6)

Hardware-in-the-Loop Rationale: 1st Aspect

 Simulation taking into consideration real wireless transmission characteristics



Development Tool (7)

❖ Hardware-in-the-Loop Rationale: 2nd Aspect

 Simulation taking into consideration processing capabilities

Deployment: Planning Tool (1)

Motivation:

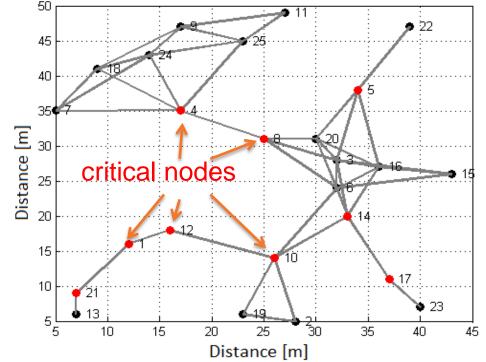
- WSN deployment provides answers to fundamental issues:
 - Number of nodes needed to meet overall system objectives
 - Deployment of these nodes to optimize network performance
 - Adjustment of network topology and sensor node placement in case of changes in data sources and network malfunction
- WSN simulation suffers from various shortcomings:
 - Insufficient propagation models in terms of environmental parameters and WSN hardware variations
 - Leading to inaccurate positioning and link quality estimation
 - Lack of accurate energy models
 - Leading to inaccurate energy-waste-per link and overall network lifetime estimation.

Deployment: Planning Tool (2)

Main Objectives:

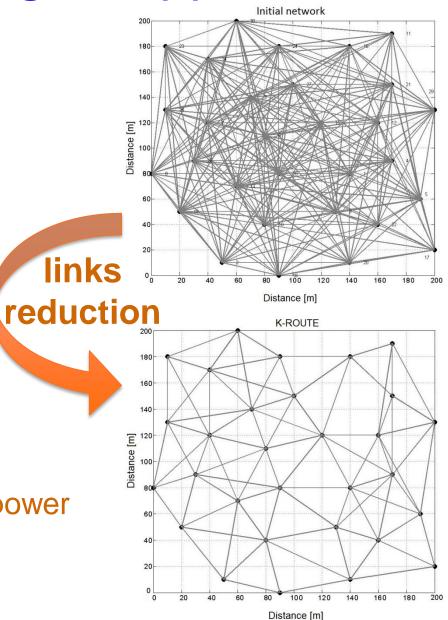
- Dominant deployment objectives:
 - Optimal sensing coverage of an area
 - Realistic representation of signal propagation considering all environmental and HW particularities
 - Optimal and energy efficient connectivity
 - Construction of network topology based on application-driven network requirements
 - Simple installation and maintenance
- Of paramount importance are the aspects of:
 - Connectivity: seamless capability of getting data from the source to the appropriate destination
 - > Topology: nodes and links that allow direct communication

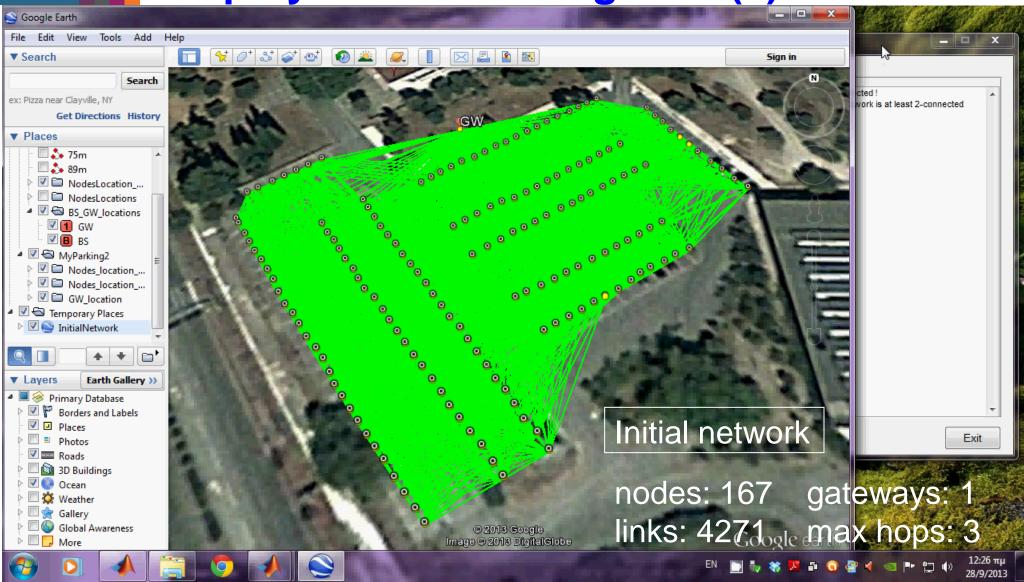
Deployment: Planning Tool (3)


- Connectivity evaluation and identification of critical nodes:
 - Critical nodes determine the reliable operation of the network, since possible malfunction or removal leads to partition
 - Connectivity evaluation algorithms encompassing:
 - ✓ the Algebraic Graph Theory (AGT) approach: representing network topologies as graphs and using linear algebra and matrix theory
 - √ the Depth First Search (DFS) approach
- Topology control:
 - Generate initial network topology based on application requirements
 - Evaluate reduced topology alternatives, preserving the connectivity and taking into account the communication overhead
 - Topology control algorithms based on: Minimum Spanning Tree (MST), transmission power and neighborhood exploitation

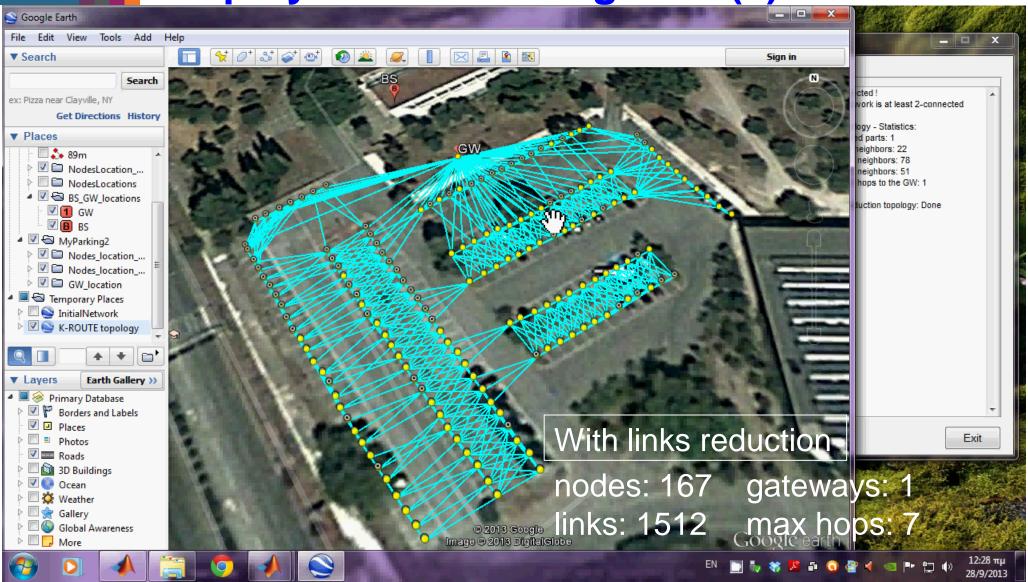
Deployment: Planning Tool (4)

Connectivity evaluation example:


- Input:
 - Area size: 50m x 50m
 - Number of nodes: 25
 - Tx power: 0dBm
 - Height from the ground: 0.1m
 - Propagation model:2-ray ground based
- Output:
 - Status of the network: connected
 - Number of critical nodes: 9
 - ➤ Node IDs: 1, 4, 5, 8, 10, 12, 14, 17, 21


Deployment: Planning Tool (5)

- Topology control example:
 - Initial topology:
 - Number of nodes: 30
 - Number of links: 582
 - Avg number of neighbors: 19
 - Reduced topology:
 - Number of nodes: 30
 - Number of links: 174
 - Avg number of neighbors: 6
 - > System performance benefits:
 - Less contention, collisions and power waste



Deployment: Planning Tool (6)

Deployment: Planning Tool (7)

Thank you for your attention.

Prof. George Papadopoulos
MC Member, Sub-WG2.3 Leader
Industrial Systems Institute / Patras
papadopoulos@ece.upatras.gr

Abbreviations

> MDE : Model-Driven Engineering

> SCA : Service Component Architecture

> CBD : Component-Based Development

