European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir*

COST Action TD1105

WGs and MC Meeting at Cambridge, 18-20 December 2013

On the direct coupling of nanostructured metal oxides and resistive silicon micro hotplate transducers

Eduard Llobet

Sub-WG Leader: Carbon nanomaterials University Rovira i Virgili / Spain

ESF provides the COST Office

Integration of low-dimensional gas sensitive metal oxides onto transducers

- LDMOX offer very high specific surface area
- Precise surface composition control (case of single crystalline NWs)
- Possibility of NW growth and surface functionalisation
- Integration of MOX nanotubes using smart anodization compatible with Microsystems technology
- Avoid the need of surface pre-treatment for substrates
- Use moderate growth temperatures (for being compatible with different substrates)
- Use scalable methods for mass-production of nanomaterials

COST is supported by the EU Framework Programme

Dromises

Needs

- (1) The precursor(s) is (are) dissolved in an organic solvent. (Single source) Enables synthesis of multicomponent materials with controlled stoichiometry.
- (2) The mixture is converted into droplets by an ultrasonic modulator. (Simple)
- (3) The aerosol of precursor and solvent are transported by a carrier gas into a hot zone where it evaporates.
- (4) The vapor of the precursor is then transported to the substrate where it absorbs and reacts to form a film.
- (5) Allows rapid formation of the deposited phases at relatively low temperatures due to the small diffusion distances between reactant and intermediates.
- (6) Low cost process since the AA-CVD can be performed in an open atmosphere.

Aerosol-Assisted CVD (VS)

Hot wall AACVD reactor **Deposition time: 45- 60 min Precursor : 150 mg T °C used : up to 500 °C** (a) AACVD cold wall reactor, (b) Alumina gas sensor

Deposition time: 15-20 min Precursor : 50 mg T °C used : up to 600°C

ESF provides the CIENCE through a Europea

COST is supported by the EU Framework Programme

Characterization (TEM and HRTEM)

Intrinsic (a) and functionalized samples with gold (b), platinum (c), and gold/platinum (d) $W(OPh)_6$ (acetone); $HAuCl_4 \cdot 3H_2O$, $H_2PtCl_6 \cdot xH_2O$, (methanol) At 350-450°C

by the EU Framework Programme

Characterization (TEM)

Precursors: $W(OPh)_6$ (acetone); Copper (II) acetylacetonate [Cu(C₅H₇O₂)₂] (methanol) Growth: At 350°C Particle size: 4-8 nm

Thin Solid Films, 548 (2013) 703-709

All WO₃ NWs with lengths of \approx 7 µ m and diameters ranging between 60 and 120 nm, corresponding to aspect ratios of \approx 60–115.

Metal NPs remain stable even when NW mats are annealed at 500°C in air for 2 hours.

Characterization (XRD)

XRD patterns of the (from top to bottom) non-functionalised, functionalised films with gold, Platinum, gold/platinum and typical diffractions of monoclinic phase (ICCD card no. 72-0677).

Characterization (XPS)

XPS core levels for pristine WO_3 powder (a), WO_3 NWs (b) and Au on WO_3 NWs (c). Light gray: W4f level for stoichiometric WO_3 . Red: W4f level for sub-stoichiometric WO_{3-x} . Blue: W 4f level of W atoms near surface defects.

Mat. Chem. Phys. 134 (2012) 809-813

EUROPERN ESF provides the COST Office

CIENCE through a European Commission contract

Gas sensing properties of tungsten oxide NWs (Silicon micromachined substrates)

Film resistance changes towards hydrogen 100 ppm at 250 °C.

Gas sensing properties of tungsten oxide NWs (Silicon micromachined substrates)

Sensor responses and error bars to 100 ppm of CO, 2 ppm of EtOH, and 100 ppm of H_2 , as a function of the operating temperature.

Gas sensing properties of tungsten oxide NWs (Silicon micromachined substrates)

Humidity effect

Growth of MOx NWs using the heater embedded in micro-hotplates

Direct growth of nanomaterials onto microhotplate transducers using the integrated heating element to reach and keep reaction temperature during growth. EHT = 4.00 k Signal A = SE2 Date :8 Nov 2012 AD = 6.6 mmMag = 42.75 K Time -15-24-26 Date :25 Sep 2012 Mag = 6.00 K X Time : 15:08:07

COST is supported by the EU Framework Programme

(a)

EUROPEAN ESF provides the COST Office

Growth of MOx NWs using the heater embedded in micro-hotplates

Schematic view of the micromachined membrane section and view of the 4microsensors mounted on standard TO-8

WO3 nanowires deposited on silicon substrate at 600 °C using cold wall reactor

MOX nanotubes by smart anodization

COST is supported by the EU Framework Programme

International Journal of Hydrogen Energy 38 (2013) 8011

ESF provides the COST Office

MOX nanotubes by smart anodization

Conclusions

- AA-CVD is a flexible, simple and scalable process for the bottom up integration of NWs in MEMS. One-step growth and decoration of NWs
- Metal decorated tungsten oxide NW sensors show a stable response and baseline (drift below 8% in 12 months)
- Smart anodization is a MEMS compatible strategy for integrating MOX nanostructures onto microhotplates. Sensitivity is highly increased