European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - EuNetAir COST Action TD1105

SECOND SCIENTIFIC MEETING Working Groups and Management Committee at University of Cambridge Queens' College, Cambridge, 18 - 20 December 2013

Action WGs GENERAL ASSEMBLY

Action Start date: 01/07/2012 - Action End date: 30/06/2016 Year 2: 2013 - 2014

PRIORITIES of COST Action TD1105 *EuNetAir*

Michele Penza

Function in the Action: Action Chair

ENEA - Brindisi, Italy

OUTLINE

- WG1 PRIORITIES: Sensor Materials and Nanotechnology
- WG2 PRIORITIES: Sensors, Devices and Systems for AQC
- WG3 PRIORITIES: Environmental Measurements and Air-Pollution Modelling
- WG4 PRIORITIES: Protocols and Standardisation Methods
- SIG1-SIG4 PRIORITIES:
 - ✓ SIG1: Network of Spin-offs
 - ✓ SIG2: Smart Sensors for Urban Air Monitoring in Cities
 - ✓ SIG3: Guidelines for Best Coupling Air-Pollutant & Transducer
 - ✓ SIG4: Expert Comments for Revision of Air Quality Directive

WG1 PRIORITIES: Sensor Materials and Nanotechnology

WG1-Leader: WG1 Compositie	 Prof. Juan Ramon Morante, IREC, Barcelona, Spain Prof. Jyrki Lappalainen, Oulu University, Finland (<i>Rome Meeting WG1 Chair</i>) On: 3 Sub-WG Leaders and 25 Members
PRIORITY #1:	<u>Metal Oxides (MOX)</u> : Thin Films, Nanoparticles, Nanowires, Nanotubes, Nanoneedles, Nanoporous Forms of Materials (ZnO, SnO ₂ , WO ₃ , TiO ₂ , InO _x , NiO, and magnetic materials Fe_3O_4 , doped dielectrics BaSrTiO ₃ , etc.)
PRIORITY #2:	Carbon Nano MATerials (CNMAT): Nanotubes, Nanoparticles, Graphene, 1D and 2D-nanostructures and their functionalization and doping
PRIORITY #3:	Molecular, Organic/Inorganic Materials: Heterostructures (semiconductors, polymers) and Schottky junctions
PRIORITY #4:	 Processing of low-cost sensors on flexible substrates: Printing techniques, inkjet printing, spin coating, droplet casting, etc. Template assisted growth of nanostructures
PRIORITY #5:	Other sensitive materials: biomaterials, enzymes, antibodies, etc.
PRIORITY #6:	Chemical modifications of the sensor materials with tuned properties to address selectivity and specific applications
PRIORITY #7:	Combination of different approaches and defining the state-of-art of the best available technologies, for example, to realize smart sensor structures

WG2 PRIORITIES: Sensors Devices and Sensor-Systems for AQC

WG2-Leader:		Prof. Andreas Schuetze, Saarland University, Germany		
WG2 Composition:		4 Sub-WG Leaders and 40 Members		
PRIORITY #1:	 Versatile μ-transducers for integration of various nanomaterials: ✓ Allow application specific adaptation and low cost ✓ Low power (down to μW range for single nanowire) 			
PRIORITY #2:	 Dynamic operation of Sensors to gain more than one signal from a single sensor for higher selectivity and stability as well possible self-monitoring at the sensor module level: ✓ Well-know but not yet standard: temperature cycling, Electrical Impedance Spectroscopy (EIS) ✓ New methods: RF, optical, excitation (gas sensitive solar cell), pulsed polarization, mass and dissipation in Quartz Crystal Microbalance (QCM) ✓ Modelling of interaction of sensing layer and gas/dust/aerosol 			
PRIORITY #3:	Selective f	ilters integrated in sensors or sensor modules		
PRIORITY #4:	Dosimeter	approach: integrating sensor response		
PRIORITY #5:	Nanopartio	cle detection for dust and aerosols		
PRIORITY #6:	-	Sensor Modules for NO _x , O ₃ , NH ₃ , H ₂ S, SO ₂ , VOC: hics combined with sensor elements		
PRIORITY #7:	 ✓ Data pre distribut 	Sensor Nodes and heterogeneous networks: e-processing and processing (in node and/or in network: parallel and ed computing) efficient communication		

WG3 PRIORITIES: Environmental Measurements and Air-Pollution Modelling

WG3-Leader:		Prof. Ole Hertel, Aarhus University, Denmark	
WG3 Composition:		3 Sub-WG Leaders and 35 Members	
PRIORITY #1:	 ✓ Various sensor ✓ Sensor ✓ Sensor CO₂ er indoor 	 Environmental Measurements: ✓ Various portable sensor-systems to be explored as <i>personal sensors</i> and <i>wearable sensors</i> in the life of every day (e.g., bikes, pedestrians, cars, smart cities, etc.) ✓ Sensors for air quality monitoring at outdoor applications ✓ Sensors for air quality monitoring at indoor applications (e.g., green buildings, low CO₂ emissions, offices, schools, air-ventilation systems, HVAC devices, open spaces, indoor energy efficiency, etc.) ✓ Wireless sensors and wireless sensor networks 	
PRIORITY #2:	✓ Air-pol	y Modelling: Iution dispersion modelling at local, urban, regional and global range cal weather forecasting (gases, vapors and particulate matter)	
PRIORITY #3:	 ✓ Smoke ✓ Allerge ✓ Airborr ✓ Fungal ✓ Airborr ✓ Long-ra ✓ Pestici ✓ Radon 	tic Negative Health Effects of Human Exposure to Air-Pollution: a from domestic wood stoves anic pollen from trees, grasses and new invasive species the allergenic material (skin tissue, hair, etc.) released from livestock spores from agriculture and other sectors the PM natural sources (sea spray, soil dust) ange transported organic & inorganic PM including agricultural emissions des applied in Europe farming & ElectroMagnetic Field (EMF) in domestic buildings lases and VOCs as air-pollutants at indoor and outdoor level	

WG4 PRIORITIES: Protocols and Standardisation Methods

WG4-Leader:		Prof. Ingrid Bryntse, SenseAir SA, Delsbo, Sweden	
WG4 Composition:		3 Sub-WG Leaders and 25 Members	
PRIORITY #1:	Odorants: ✓ H ₂ S and organic thiols (mercaptans) ✓ Odour monitoring		
PRIORITY #2:	 Particulate Matter (PM): ✓ PM₁₀, PM_{2.5}, Ultrafine PM ✓ Black Carbon (BC) 		
PRIORITY #3:	 VOC, Indoor Air: ✓ CH₂O methanal (formaldehyde) ✓ C₆H₆ (Benzene) and other BTX (Benzene, Toluene, Xylene) 		
PRIORITY #4:	 Inorganic Gases: NO₂ (nitrogen dioxide) & O₃ (ozone), analysed simultaneously CO₂ (carbon dioxide) (ventilation indicator and greenhouse gas) 		
PRIORITY #5:	✓ <u>Sma</u> cust	at Low-cost Sensors: I <u>II sensor</u> with simple PCB: €100 (OEM manufacturer price to a omer which use in their system) Sor modules: €300	
PRIORITY #6:	Labora	tory and Field Testing at National Accredited Test Laboratories	

SIG1 PRIORITIES: Network of Spin-offs

SIG1-Leader:	Dr. Marco Alvisi, ENEA, Brindisi, Italy
SIG1 Composition	n: 1 SIG1 Deputy and 15 Members
PRIORITY #1:	Chemical and radiation environmental monitoring
PRIORITY #2:	Ozone sensors, NO_x , CO and SO_2 sensors for automotive applications
PRIORITY #3:	Improve stability of the available sensors, compatibility with CMOS microelectronics, soft CMOS post-processing methods for reproducible high throughput manufacturing
PRIORITY #4:	Toxic and explosive (hydrogen) gas leakage
PRIORITY #5:	Biosensor based on enzyme for dioxin and Persistent Organic Pollutants (POP), work on POP detection
PRIORITY #6:	VOC detection developing sensors modules and sensor systems
PRIORITY #7:	Indoor air quality control, leak detection
PRIORITY #8:	Odour monitoring system (odour-telephone)
PRIORITY #9:	Enhancement of the sensing properties by introducing functional receptive groups
PRIORITY #10:	Coupling different transduction modes in the same device

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

SIG2 PRIORITIES: Smart Sensors for Urban Air Monitoring in Cities

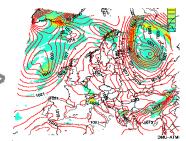
✓ Se ✓ Cl			Prof. Rod Jones, University of Cambridge, Cambridge, UK 1 SIG2 Deputy and 30 Members	
		ion:		
		✓ Self-✓ Clev	sion of «Smart»: monitoring: e.g., fault detection er design/manufacturing: e.g., self-calibrating. <u>Ideally both needed</u> . art use of «stupid» (not educated) sensors	
	PRIORITY #2:	 Sensor Systems: ✓ sensors + analysis/correction + archiving + data mining + mapping + interpretation/dissemination ✓ Deliver answers to: General public (low pollution routes/traffic flow) Legislature/compliance Health impacts community Activity goes way beyond <i>simple</i> sensor development 		
	PRIORITY #3:	 Other Issues: Transferring A/Q knowledge from one environment to another (do we have sensor networks everywhere ? Continuously deployed ?) Use of modelling ? Philosophy of testing models, combining model/sensor network outputs - Data assimilation - Applicability High cross-disciplinary, are all other communities represented here ? 		
	PRIORITY #4:	Roadm	ap issues to be discussed more in SIG2	

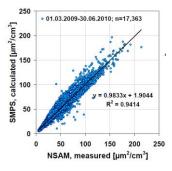
SIG3 PRIORITIES: Guidelines for Best Coupling Air-Pollutant and Transducer

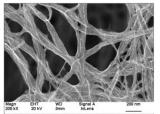
SIG3-Leader:	 Prof. Giorgio Sberveglieri, University of Brescia, Brescia, Italy Prof. Eduard Llobet, Universitat Roviri I Virgili, Tarragona, Spain (<i>Rome Meeting SIG3 Chair</i>)
SIG3 Composition	1 SIG3 Deputy and 15 Members
	Identify which are the physical parameters being affected by gas/material interaction (for a rationale design of the transducer)
PRIORITY #2: C	Continuous measurements versus exposure/recovery measurements
	Study of the best coupling of the air pollutants associated to a given transducer
v	 Case-studies: ✓ Common evaluation protocols for sensors (<i>sensor benchmarking</i>) ✓ Study the combination of <i>different transduction principles</i> to enhance selectivity ✓ Selection of <i>target applications</i> so specifications (i.e., sensitivity, selectivity, interference rejection, use of sample pre-treatment, response time, etc.) can be set

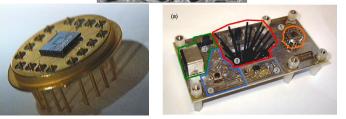
SIG4 PRIORITIE	ES: Ex	pert Comments for the Revision of the Air Quality Directive
SIG4-Leader:		Dr. Thomas Kuhlbusch, IUTA eV, Duisburg, Germany
SIG4 Composition:		1 SIG4 Deputy and 25 Members
metho		r quality demands may be lower than those those of reference ds. Nevertheless, characterization is needed and specific data y requirements have to be set
PRIORITY #2:	Modelling of urban air pollution and population exposure can be improved by sensors due to higher spatial resolution	
PRIORITY #3:	Ammonia being a precursor for PM might be worth more attention: sensor networks could help in identifying sources; increasing controbutions from traffic and other sources in particular situations (e.g., garbage boxes)	
PRIORITY #4:	Review of AQD implementation problems and proposals how these could be targeted by application of sensors	
PRIORITY #5:	 Recommendations on: ✓ New Metrics (e.g., Black Carbon) ✓ Data Quality Requirements ✓ Use for Model Improvements ✓ Specific Research Needed 	
PRIORITY #6:		lines on <i>Data Quality Requirements</i> for sensors to be used in relation <i>D</i> (e.g, support indicative screening or complementary modeling)
PRIORITY #7:	SIG4 a	addressing AQD revision planned for 2018 !

Challenges addressed by Action TD1105


- Nanomaterials for AQC sensors
- Low-cost Gas Sensors
- Low-power Sensor-Systems
- Wireless Technology (Environmental Sensors Network)
- Air Quality Modelling
- Environmental Measurements
- Standards and Protocols


ropean Network on New Sensing Technologies for A


Pollution Control and Environmental Sustainability - FuNetAi



Contact Details

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

- CSO Approval:
- Kick-off Meeting:
- Start of Grant:
- End of Grant:

01	Dec. 2011
16	May 2012
01	July 2012
30	June 2016

www.cost.eunetair.it

MC Chair:	Dr. Michele Penza, ENEA, IT michele.penza@enea.it
MC Vice Chair:	Prof. Anita Lloyd Spetz Linkoping University, SE spetz@ifm.liu.se
Grant Holder:	Dr. Corinna Hahn Eurice GmbH, DE c.hahn@eurice.eu
Scientific Secretary:	Dr. Annamaria Demarinis Loiotile annamaria.demarinis@uniba.it
Science Officer:	Dr. Deniz Karaca deniz.karaca@cost.eu
Administrative Officer:	Dr. Kent Hung kent.hung@cost.eu
Rapporteur ESSEM:	Prof. Kostantinos Kourtidis (GR) kourtidi@env.duth.gr
Rapporteur MPNS:	Prof. Joaquim Manuel Vieira (PT) jvieira@cv.ua.pt
Rapporteur CMST:	Prof. Antonio Lagana (IT) lagana05@gmail.com

http://www.cost.eu/domains_actions/essem/Actions/TD1105