AGENDA: Round-Table

17:30 - 18:30	Action TD1105 ROUND-TABLE DISCUSSIONS Chairman: Michele Penza, Action Chair Italian National Agency for New Technologies, Energy and Sustainable Economic Development - ENEA, Brindisi, Italy			
Breakthroughs in Environmental Sensor Technology for Green-Economy in Europe				
17:30 - 17:40	Urban Europe: Air Pollution Control in Smart Cities Michele Penza, COST Action TD1105 Chair, ENEA, Brindisi, Italy			
17:40 - 17:50	FP7 MACPoll Project: Metrology for Low-Cost Sensor Technologies in Air Quality Control Laurent Spinelle, JRC, Institute for Environment and Sustainability, Ispra, Italy			
17:50 - 18:00	CMOS Sensors for Harsh Environments (on behalf of EC Project SOI-HITs Consortium) Florin Udrea, Action SIG1 Deputy, Cambridge CMOS Sensors Ltd, Cambridge, UK			
18:00 - 18:10	NDIR Gas Sensors Ready for Automotive Applications Hans Martin, Action WG4 Leader Team, CEO of SenseAir SA, Delsbo, Sweden			
18:10 - 18:20	50 th Anniversary of Metal Oxides Gas Sensors: Which Future for Emerging Sensor Technologies? Marcel Bouvet, Action Sub-WG1.3 Leader, Universitè de Bourgogne, Dijon, France			
18:20 - 18:30	Discussion of Action Participants: Comments and Inputs on Priorities, R&I Needs, Strategies, Roadmap for future joint-activities of Action TD1105 EuNetAir			
18:30	CLOSING OF WGs and SIGs MEETING			

European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir* COST Action TD1105

SECOND SCIENTIFIC MEETING Working Groups and Management Committee at University of Cambridge Queens' College, Cambridge, 18 - 20 December 2013

ROUND-TABLE : Breakthroughs in Environmental Sensor Technology for Green-Economy in Europe

Action Start date: 01/07/2012 - Action End date: 30/06/2016

Year 2: 2013 - 2014

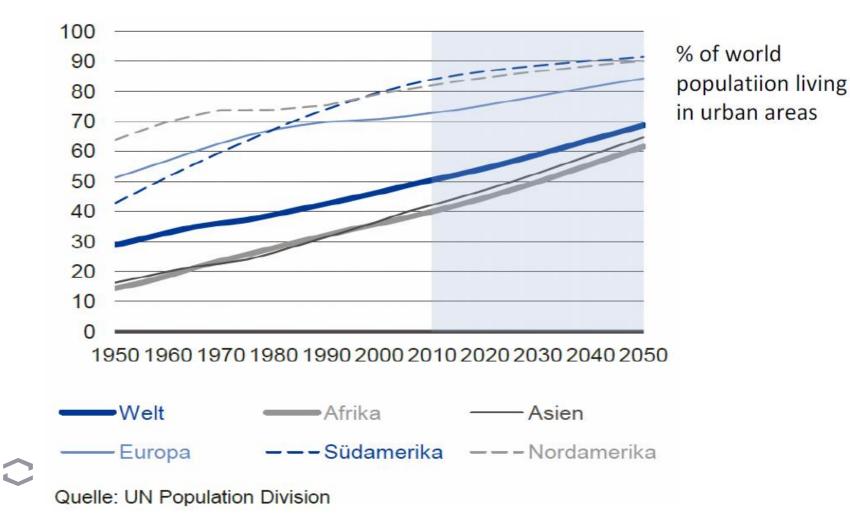
URBAN EUROPE: Air Pollution Control in Smart Cities

Michele Penza

Function in the Action: Action Chair

ENEA - Brindisi, Italy

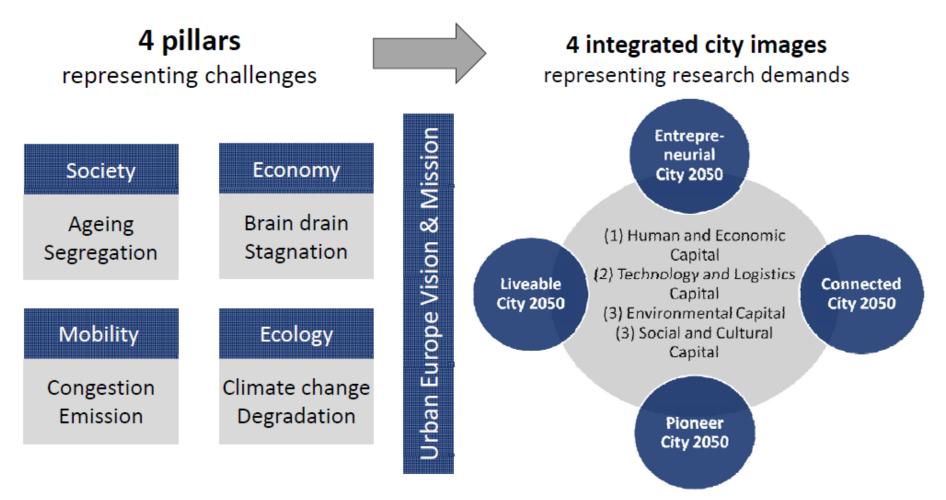
ESF provides the COST Office


OUTLINE

- **URBAN EUROPE:** Joint Programming Initiative
 - Strategic Research Agenda
 - Trends and Challenges
- SMART CITIES & COMMUNITIES:
 - Competitive Low-Carbon Energy Technologies
 - Examples of Application/Demonstration in European Cities
- AQ MONITORING IN EUROPE:
 - Data Quality Objectives (DQO) of AQ DIRECTIVE (2008/50/EC) on Ambient Air Quality and Cleaner Air for Europe (CAFE)
- ENERGY CHALLENGE WP 2014-15:
 - Call from Social Challenge 5 (Expected on October 2014): 2015: Improving the Air Quality of European Cities COOPERATION IN SCIENCE AND TECHNOLOGY

URBAN EUROPE - Joint Programming Initiative

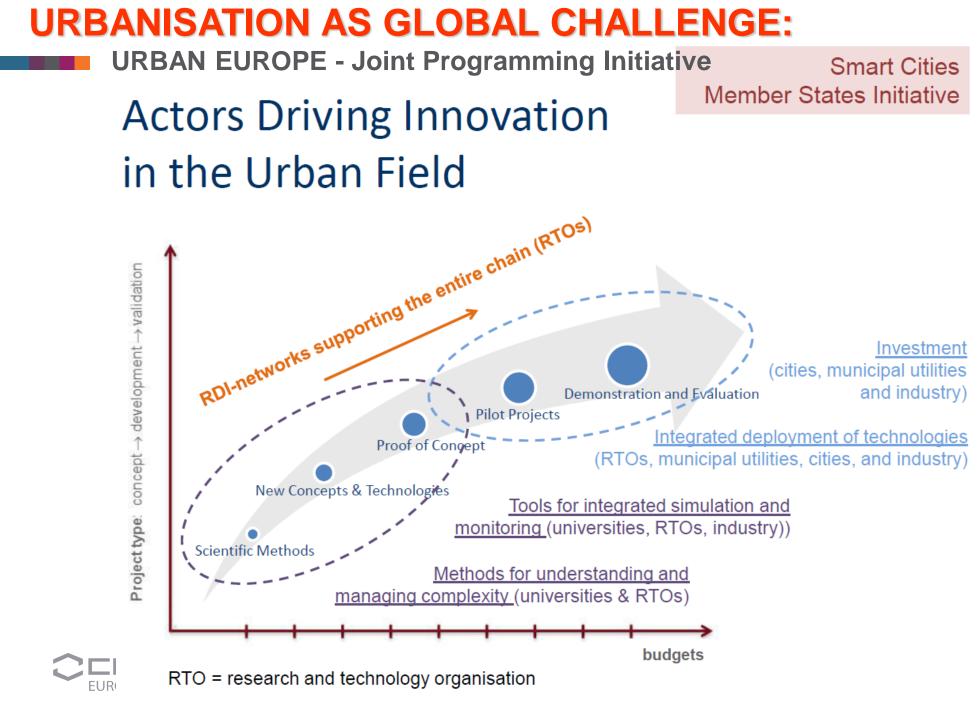
Urbanisation as a Grand Challenge


URBAN EUROPE - Joint Programming Initiative

URBAN EUROPE - Joint Programming Initiative URBAN®EUROPE

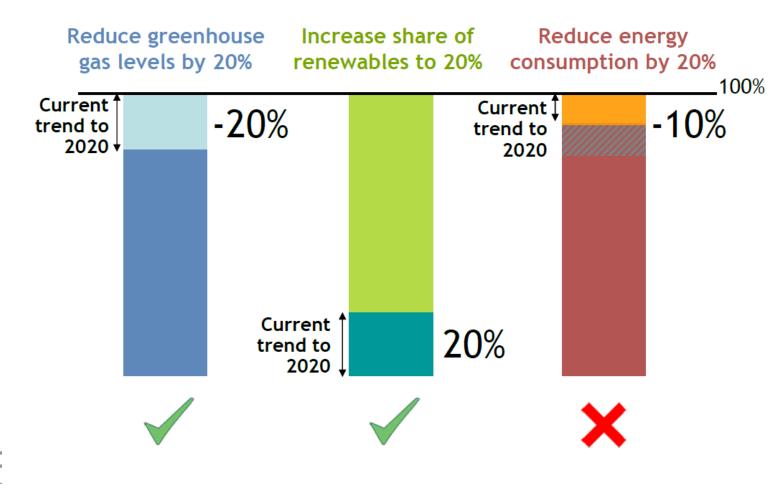
Joint Programming Initiative

Strategic Research Framework – Process


URBAN EUROPE - Joint Programming Initiative

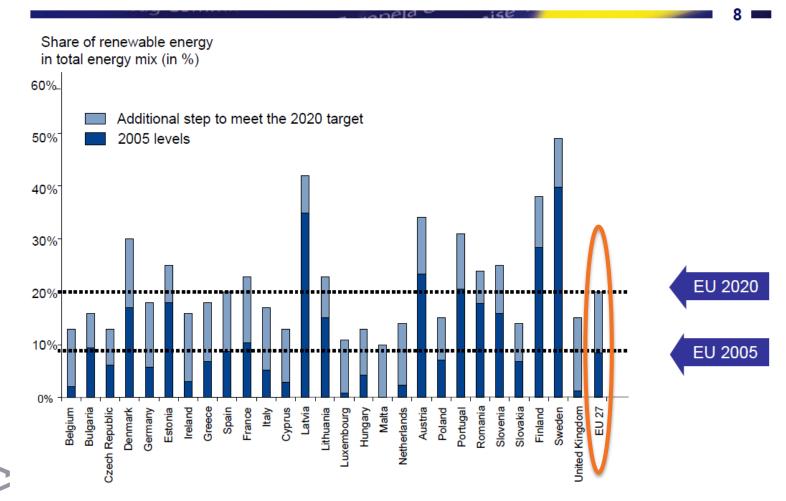
Smart Cities Member States Initiative

Cities are complex organisms



- A city cannot be understood by only looking at its buildings, or its transportation system, or its energy distribution, or even its people.
- A city is made up of the intricate interactions and exchanges of all its people, information, money, systems, and infrastructure.
- The high complexity of this interdependence is complemented by a slow pace of change in demography and infrastructure, making it hard to discern causes and effects.
- To understand how a city functions and how its development can be influenced by policy, investment, or technology is therefore a complex task.

URBANISATION AS GLOBAL CHALLENGE: ENERGY PRIORITIES OF EUROPE


J. M. Barroso, EC President to EU Council on 4 February 2011 Meeting our "20-20-20 by 2020" goals

Presentation of J.M. Barroso to the European Council, 4 February 2011

URBANISATION AS GLOBAL CHALLENGE: ENERGY PRIORITIES OF EUROPE

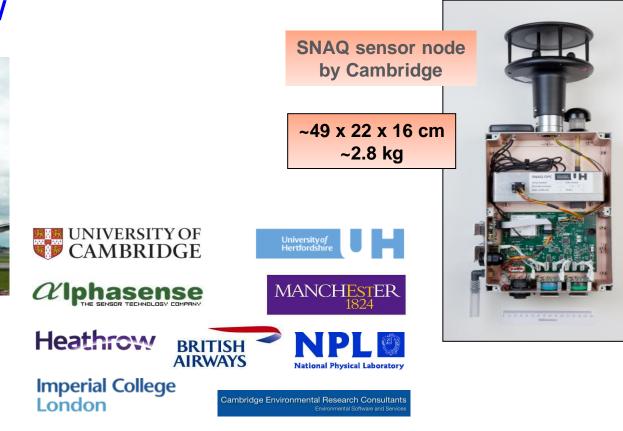
J. M. Barroso, EC President to EU Council on 4 February 2011 What the EU renewable target means

Presentation of J.M. Barroso to the European Council, 4 February 2011

URBANISATION AS GLOBAL CHALLENGE: ENERGY PRIORITIES OF EUROPE

J. M. Barroso, EC President to EU Council on 4 February 2011 What improving energy efficiency means for a single family house built in the 70s (150 m²)

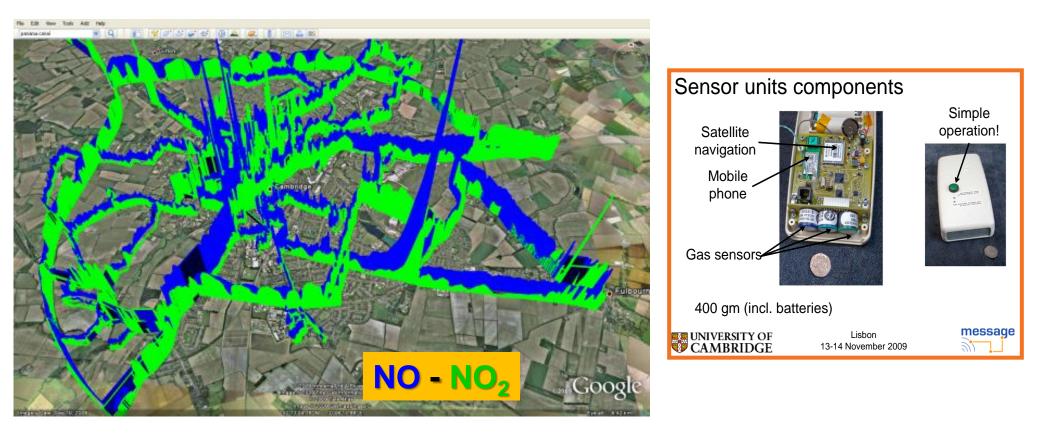
Presentation of J.M. Barroso to the European Council, 4 February 2011


London: Heathrow Airport

SNAQ-Heathrow project: Wireless Sensors Network

Courtesy by Rod Jones and Alphasense Ltd

- ~ 36 sensor nodes located in and around the airport
- Web: http://www.snaq.org/

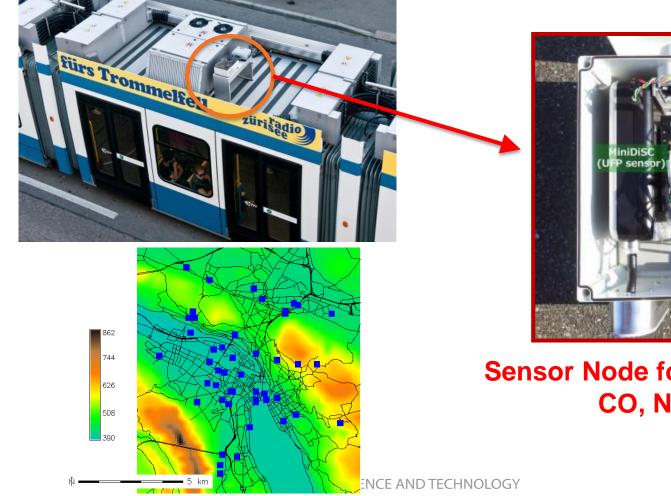


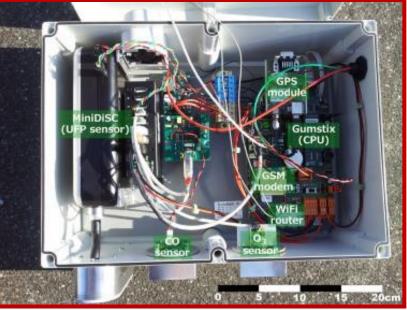
EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Cambridge: City

MESSAGE project: Wireless Sensors Network

Courtesy by Rod Jones and Alphasense Ltd

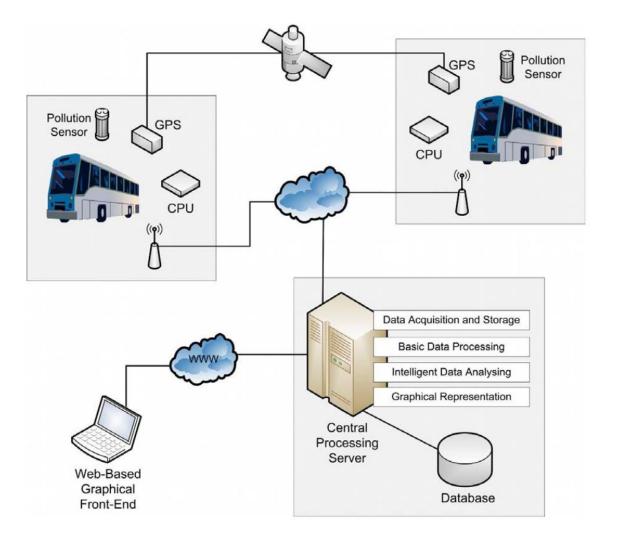




Lausanne and Zurich: City

OpenSense project: Wireless Fixed/Mobile Sensors Network

Courtesy by Karl Aberer and OpenSense Consortium

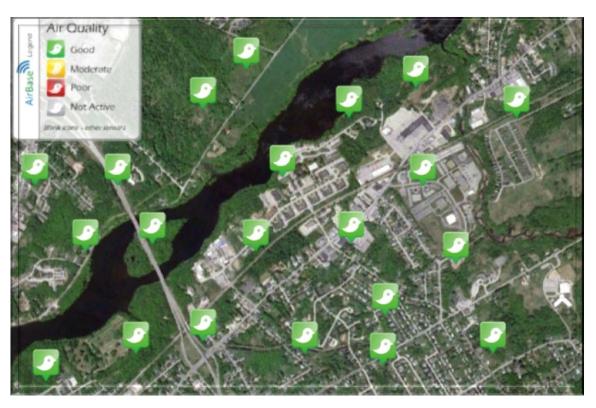


Sensor Node for Air Quality Monitoring: CO, NO_x , O_3 , UFP, etc.

Vigo and La Coruna: City

Mobile Wireless Sensors Network on Public Transportation

Courtesy by F. Lopez-Pena et al., Sensors & Transducers, 8, 13-25, February 2010



Mobile Sensor Node for Air Quality Monitoring: CO, NO_x, O₃, SO₂, CO₂, T, RH

Copenhagen and Other Cities around World Wireless Fixed AQ Sensors Network

Courtesy by Raviv Yatom, Airbase Systems Ltd

Live Data: http://sensors.myairbase.com/

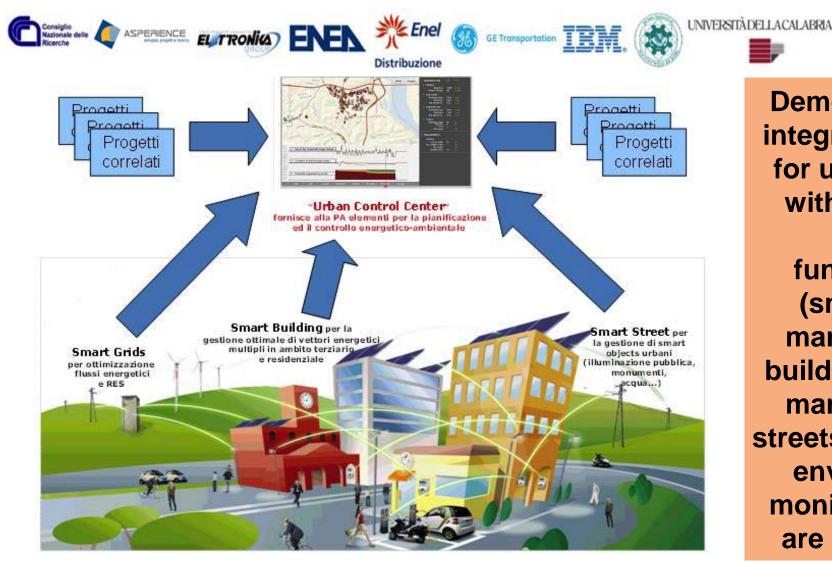
Airbase CanarlT AQ sensor-node: NO₂, O₃, VOC, PM, Noise, T, RH

Dubai: Network in City

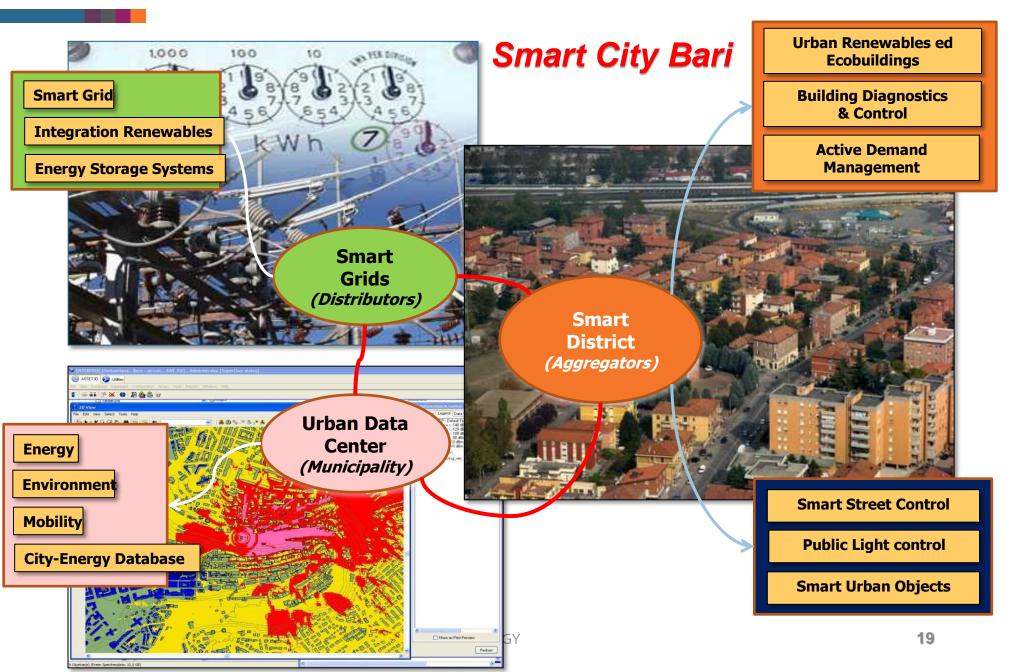
Wireless Fixed AQ Sensors Network

Courtesy by Paul Pickering, Aeroqual Ltd

AEROQUAL, AQM 60 - Air Quality Sensors Station: CO, NO_x, O₃, SO₂, H₂S, VOC, NMHC, CO₂, TSP, PM₁₀, PM_{2.5}, PM_{1.0}, Meteorological Parameters: T, RH, Wind velocity/direction



Dubai Municipality


Bari, Italy: City RES-NOVAE national IT project:

Networks, Buildings, Streets for New Challenges towards Environment and Energy Courtesy by RES-NOVAE Consortium

Demonstration an integrated solution for urban context with distributed Energy **functionalities** (smart grids), management of buildings network, management of streets and real-time environmental monitoring in City are cooperative.

IT NATIONAL PROJECT RES-NOVAE: APPLICATIONS SCENARIO

IT NATIONAL PROJECT RES-NOVAE: APPLICATIONS SCENARIO

Smart City Bari

School **Municipality** Carducci Residential Offices **Buildings** (IACP)

ENEA AQ Sensor Node

Real-Word Scenario for Sensor Technology Demonstration: Schools, Public Offices, Buildings

Michel Gerboles, JRC-Ispra, IES

Fixed measurements: definition

'fixed measurements' means measurements taken at fixed sites to determine the levels in accordance with the relevant *Data Quality Objectives* (DQO);

Fixed measurements are mandatory in zones and agglomerations where the upper assessment thresholds are exceeded.

AQD: European DIRECTIVE 2008/50/EC on ambient air quality and cleaner air for Europe, art. 2

Michel Gerboles, JRC-Ispra, IES

AQD: Data Quality Objectives (DQO)

	SO ₂ , NO ₂ /NOx , CO	Benzene	O ₃
Uncertainty for fixed measurements	15 %	25 %	15 %
	· · ·		UV photometry
		ration of equiv atory to use n	valence would nicro-sensors

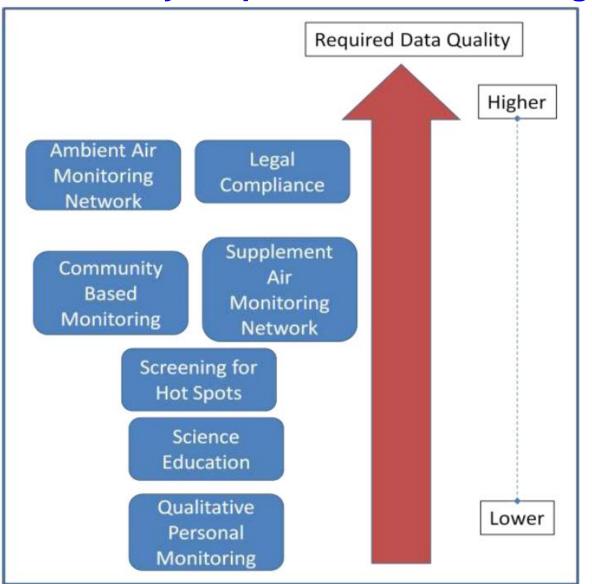
Indicative methods: definition

'indicative measurements' means measurements which meet data quality objectives that are less strict than those required for fixed measurements;

AQD: European Directive 2008/50/EC on ambient air quality and cleaner air for Europe, art. 2

Michel Gerboles, JRC-Ispra, IES

AQD: Data Quality Objectives (DQO)


	SO ₂ , NO ₂ /NO /NOx, CO	Benzene	O ₃
Uncertainty for fixed measurements	15 %	25 %	15 %
Uncertainty for indicative measurements	25 %	30 %	30 %
	diffusive samplers, <i>micro-sensors</i>		

Michel Gerboles, JRC-Ispra, IES

Roadmap for Next Generation Air Monitoring *U.S. Environmental Protection Agency*

Data Quality Requirements for the range of NGAM applications

US EPA, March 2013:

Tim Watkins, US EPA Watkins.Tim@epa.gov

Viens Matthew, US EPA Viens.Matthew@epa.gov

http://epa.gov/research/airscien ce/docs/roadmap-20130308.pdf

FUTURE RESEARCH TRENDS in AQ SENSORS New Sensor Technologies

- Miniaturisation of MOX: huge number of publications on nano particles, nano-wire, carbon nanotubes: <u>no commercial sensors yet</u>
- Graphene sensors (material with low resistance able to enhance sensitivity) - no commercial sensors yet
- Chemical filter directly coated on the sensing layer to avoid crosssensitivity (NO₂ and O₃)
- Low-cost and Low-power Gas Sensors (Alphasense Ltd, SenseAir SA, UST GmbH, SGX-Sensortech SA, Sensichips srl, Figaro Inc, FIS Inc, etc.) in integrated air-quality stations (Unitec, Aeroqual, Contec, Libelium, Environnement, etc.), personal light badge

FUTURE TRENDS in AIR QUALITY SENSORS European Policy for the use of sensors

Micro-sensors:

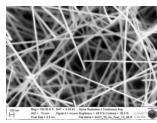
- for now: not mentioned, not foreseen in European legislation for regulatory purposes
- European Members States shall demonstrate that the Data Quality Objective for Indicative Methods is met (*national projects*).
- For now, the European Commission mainly observes the results of some Research projects related to micro-sensors: MACPoll, AIRMONTECH, FP7- ENV.2012.6.5-1 (air quality monitoring in a "Smart City" context with community involvement, S3-EURUSSIA, COST Action TD1105 EuNetAir, etc. ...)

ENERGY CHALLENGE WP 2014-15:

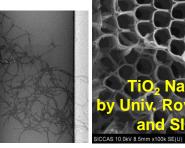
Call from Social Challenge 5 (Expected on October 2014):

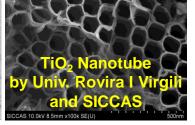
2015: Improving the Air Quality of European Cities

Specific Challenge: The majority of the European Population lives in urban environments where citizens are frequently exposed to levels of air pollution exceeding the limit values established by the European directives.


Scope: Development of technological options and strategies to fight against air pollution and climate change ensuring the involvement of the main sectors transport, energy and agriculture.

Research will include the development and applications of tools in support of air quality governance in the EU Member States and regions, integrated assessment tools for the design of adequate abatment strategies including source apportionment advanced techniques to determine the origin of air pollution to reduce the negative effects of air pollution on human health and climate change.


Expected Impact: Improved air quality in EU cities.



Selected Examples of Gas Sensors and Sensor Systems

Metal oxide (SnO₂) **Carbon Nanotubes** Nanowires nets by Univ. of Brescia by Ames NASA

GasFET by EPFL, CH

Measure

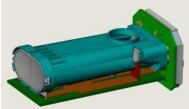
Carbon Nanotube Gas Sensors

Autonomous Gas Sensor System by IREC and Univ. of Barcelona

Lisbon

Sensor units components

Satellite navigation Mobile phone Gas sensors


UNITEC srl, ETL3000 multi-component outdoor air quality monitor

AEROQUAL, AQM 60 Air Quality Sensors Station

An Octocopter, the first platform on which we (Max Planck Institute for Biogeochemistry, Jena, Germany) tested a measurement sensor package for air quality sensors.

Cantilever Sensor by DTU, DK

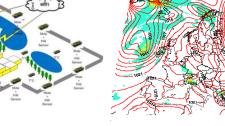
SenseAir SA. A Robust Low-Cost NDIR Sensor Platform for sub-ppm Gas Detection

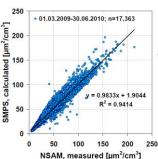
400 gm (incl. batteries) EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY UNIVERSITY OF CAMBRIDGE 13-14 November 2009

Simple

operation!

Challenges addressed by Action TD1105


- Nanomaterials for AQC sensors
- Low-cost Gas Sensors
- Low-power Sensor-Systems
- Wireless Technology (Environmental Sensors Network)
- Air Quality Modelling
- Environmental Measurements
- Standards and Protocols


propean Network on New Sensing Technologies for A

Pollution Control and Environmental Sustainability - EuNetAi

Contact Details

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

- CSO Approval:
- Kick-off Meeting:
- Start of Grant:
- End of Grant:

01	Dec. 2011
16	May 2012
01	July 2012
30	June 2016

www.cost.eunetair.it

MC Chair:	Dr. Michele Penza, ENEA, IT
	michele.penza@enea.it
	Prof. Anita Lloyd Spetz
MC Vice Chair:	Linkoping University, SE
	<u>spetz@ifm.liu.se</u>
	Dr. Corinna Hahn
Grant Holder:	Eurice GmbH, DE
	<u>c.hahn@eurice.eu</u>
Colontific Comptonuu	Dr. Annamaria Demarinis Loiotile
Scientific Secretary:	annamaria.demarinis@uniba.it
Colorado Officario	Dr. Deniz Karaca
Science Officer:	deniz.karaca@cost.eu
Administrative	Dr. Kent Hung
Officer:	kent.hung@cost.eu
	Prof. Kostantinos Kourtidis (GR)
Rapporteur ESSEM:	kourtidi@env.duth.gr
	Prof. Joaquim Manuel Vieira (PT)
Rapporteur MPNS:	jvieira@cv.ua.pt
	Prof. Antonio Lagana (IT)
Rapporteur CMST:	lagana05@gmail.com

http://www.cost.eu/domains_actions/essem/Actions/TD1105