European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir*

COST Action TD1105

WGs and MC Meeting at ISTANBUL, 3-5 December 2014

Action Start date: 01/07/2012 - Action End date: 30/06/2016

Year 3: 1 July 2014 - 30 June 2015 (Ongoing Action)

Effect of dopants and humidity on NO₂-sensing with semiconducting SnO₂

Bilge Saruhan-Brings

WG1 Member

Dept. of High Temperature and Functional Coatings, Institute of Materials Research, German Aerospace Center/ Cologne, Germany

Current research activities at DLR

- Nano-tubular TiO₂-sensor electrodes for NO₂ and CO sensing at intermediate temperatures (300°-500°C)
- Y. Gönüllü, C.G. Mondragón Rodríguez,
- B. Saruhan, M. Ürgen, Improvement of gas
- sensing performance of TiO₂ towards NO₂
- by nano-tubular structuring, Sensors and Actuators
- B: Chemical, Volume 169 (5 July 2012)151-160.

NO₂ sensing at elevated temperatures (600°-900°C) by the use of doped TiO₂ and catalytic self-regenerative Perovskite layers

200

Current research activities at DLR

- Total NO_x sensing by means of component integrated impedance-metric sensors
- M. Stranzenbach and B. Saruhan, Equivalent circuit analysis
- on NOx impedance-metric gas sensors, Sensors and Actuators
- B: Chemical, 137(1) 154-163, 2009
- M. Stranzenbach; E. Gramckow and B. Saruhan, Planar,
- impedance-metric NOx sensor with spinel-type SE for high temperature
- applications, Sensors and Actuators, B, 127, 224-230, 2007

- Effect of Al-doping on high-temperature NO₂-sensing
- B. Saruhan A. Yüce, Y. Gönüllü, K. Kelm,
- Effect of aluminium doping on NO₂ gas
- sensing of TiO₂ at elevated temperatures,
- Sensors and Actuators, B 187 (2013)
- 586-597.

Research Facilities: Coating

Research Facilities

SESAM – Sensor and Catalyst Test Unit

EUROPEAN COOPERATION IN SCIENCE AN IDE INTERIODGY

Motivation and objectives

- The main disadvantages of cheap semiconductor oxides are
 - The lack of sensitivity to monitor dilute NOx,
 - Need of long-term stability under fluctuating environments
 - Signals from interfering gases
- This work suggests and evaluates
 - The use of sputter technique for deposition of sensing layers based on SnO₂
 - Effect of dopants on NO₂-sensing of SnO₂
 - Sensing property of SnO₂ in the presence humidity

Morphology of undoped SnO₂ layers

	Power	Structure	Coating	Annealing
Undoped	450.144			
SnO ₂	150 W	Crystal feather structure	Rotated	800°C in air, 5 h

As coated

Annealing after 800°C for 5 hours

NO₂-sensing of un-doped SnO₂

Under low concentrations 500-2000 ppb NO₂

NO₂-sensing of un-doped SnO₂

at 400°C - 600°C, Humid Argon

at 400°C - 600°C, Dry Argon

9

Effect of Dopant on Morphology

	Sn- Power	Doped Power	Atm. % of doped materiel	Ar / O ₂ ‰	Structure	Annealing
Al-doped SnO ₂	100 W	80 W	1,6 at. %	70 / 30	Cassiterite	800°C in atm 5 St.
Cr-doped SnO ₂	100 W	65 W	6 at. %	70 / 30	Cassiterite	800°C in atm 5 St.
W-doped SnO ₂	100 W	130 W	8 at. %	70 / 30	Amorphous	800°C in atm 5 St.

Effect of dopants on NO₂-sensing of SnO₂

NO₂-sensing with Al-doped SnO₂

12

Dynamic response towards NO₂

(a) Sputtered SnO₂ (b) SnO₂:Al sensors when exposed to 50, 100 and 200 ppm of NO₂ gas concentrations in dry argon carrier gas and at T = 400°, 500° and 600°C

Dynamic response of SnO₂:Al sensors

Normalized $S = [\{R_{(t)} - R_{(Ar)}\} / \{R_{(NO2)} - R_{(Ar)}\}] R_{(t)}$, $R_{(Ar)}$ and $R_{(NO2)}$ designate real time resistance, resistance in argon and NO₂ gas, respectively.

Response of Al-doped SnO₂ towards NO₂ in the presence of humidity

Conclusions

- NO₂ sensing of SnO₂ sensors
 - is reasonable well with sputtered thin layers under low concentrations and at lower temperatures (250°-400°C)
 - Al-doping improves sensor signal up to 600°C
 - yielding more selective sensing towards NO₂ in CO+NO₂ gas mixtures
 - the presence of humidity (up to 10% RH) shortens the response and recovery times drastically and improves NO₂-sensing at 600°C
 - indicating a change in adsorption kinetics probably due to change in sensing mechanism.

• Thank you very much for your attention

Suggested R&I Needs for future research

- Development of SO₂ sensors for use at severe environments (e.g. volcano ash detection in atmosphere)
- Nanostructured ultra-thin sensing films and top/bottom circuitry for room temperature sensing

