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Current research activities at DLR 

• Nano-tubular TiO2-sensor electrodes for NO2 and CO sensing at 

intermediate temperatures (300°-500°C) 
 

• Y. Gönüllü, C.G. Mondragón Rodríguez,  

• B. Saruhan, M. Ürgen, Improvement of gas  

• sensing performance of TiO2 towards NO2  

• by nano-tubular structuring, Sensors and Actuators  

• B: Chemical, Volume 169 (5 July 2012)151–160. 

• NO2 sensing at elevated temperatures (600°-900°C) by the use of 

doped TiO2 and catalytic self-regenerative Perovskite layers  
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Current research activities at DLR 

• Total NOx sensing by means of component integrated 

impedance-metric sensors 
 

• M. Stranzenbach and B. Saruhan, Equivalent circuit analysis  

• on NOx impedance-metric gas sensors, Sensors and Actuators  

• B: Chemical, 137(1) 154-163, 2009 

• M. Stranzenbach; E. Gramckow and B. Saruhan, Planar,  

• impedance-metric NOx sensor with spinel-type SE for high temperature  

• applications, Sensors and Actuators, B, 127, 224-230, 2007 

• Effect of Al-doping on high-temperature NO2-sensing 
 

 

• B. Saruhan A. Yüce, Y. Gönüllü, K. Kelm,  

• Effect of aluminium doping on NO2 gas  

• sensing of TiO2 at elevated temperatures, 

• Sensors and Actuators, B 187 (2013) 

• 586-597. 
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Research Facilities: Coating 
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Research Facilities 

SESAM – Sensor and Catalyst Test Unit 
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Gas mixture unit 

•  5 MKS  MFC  

•  Control unit for up to 8 

MFCs 

• Test gases: NOx, COx, 

CH4, N2, O2, H2, etc. 

• Carrier gas: N2, Ar, Air,  

• Max. flow 1000 sccm/min. 

 

Gas mixture unit 

• Test gases: Water 

vapour, HCs 

•  Heating system of 

tubes for gas flow 
Sensor and catalyst chamber 

• computer controlled tubular furnace 

(CARBOLITE)  up to 1200 °C,  

• Quart-glass  recipient stable up to 1300 °C,  

• 3 m for heating of gas mixture 

• Flexible sample geometry (max. 50 mm) with 

variable interior 

 

Gas analyzer Unit 

• Multi-gas detector from 

ABB and Pfeiffer 

• Test up to 6 test gases 

simultaneously:  NO, NO2, 

CH4, CO, CO2, H2,  

 

Sensor Characterization 

•  Impedance spectroscope SOLARTRON 

 1255b and Potentio-stat  Solartron1286 

•  Frequency range: 10µHz – 1MHz 

•  Frequency resolution: 10µHz 

•  Impedance range: 0 – 100 MΩ 

•  DC- Bias range:  50V 

•  Computer controll over IEEE 488  Interface 
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Motivation and objectives 

• The main disadvantages of cheap semiconductor 

oxides are  

• The lack of sensitivity to monitor dilute NOx, 

• Need of long-term stability under fluctuating 

environments 

• Signals from interfering gases 

• This work suggests and evaluates 

• The use of sputter technique for deposition of 

sensing layers based on SnO2 

• Effect of dopants on NO2-sensing of SnO2   

• Sensing property of SnO2 in the presence humidity 



Morphology of undoped SnO2 layers 
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Power Structure Coating Annealing 

Undoped 

SnO2 150 W Crystal feather structure Rotated 800°C in air, 5 h 

As coated Annealing after 800°C for 5 hours 



NO2-sensing of un-doped SnO2  
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at 300°C, synt. air + 50% humidity at 400°C, synt. Air + 50% humidity 

Under low concentrations 500-2000 ppb NO2 



NO2-sensing of un-doped SnO2  
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Effect of Dopant on Morphology 
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800°C  800°C  

Sn-

Power  

Doped 

Power 

Atm. % of 

doped materiel 
Ar / O2 ‰ Structure Annealing 

Al-doped SnO2 100 W 80 W 1,6 at. % 70 / 30 Cassiterite 800°C in atm 5 St. 

Cr-doped SnO2 100 W 65 W 6 at. % 70 / 30  Cassiterite 800°C in atm 5 St. 

W-doped SnO2 100 W 130 W 8 at. % 70 / 30  Amorphous 800°C in atm 5 St. 

800°C  



Effect of dopants on 

NO2-sensing of SnO2  
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at 300°C, synt. air + 50% humidity at 400°C, synt. Air + 50% humidity 
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NO2-sensing with Al-doped SnO2 
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Dynamic response towards NO2 
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(a) Sputtered SnO2                                       (b) SnO2:Al sensors  

when exposed to 50, 100 and 200 ppm of NO2 gas concentrations in 

dry argon carrier gas and at T = 400°, 500° and 600°C 
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Exposure to 50 and 100 ppm of NO2 gas concentrations  

-    in Dry Argon,  

-  in Argon with 1% O2  

-  in Argon with 5% RH 

Normalized S = [{R(t) – R(Ar)} / {R(NO2) – R(Ar)}] R(t), R(Ar) and R(NO2) designate 

real time resistance, resistance in argon and NO2 gas, respectively. 

Dynamic response of SnO2:Al sensors  

measured at Tw = 600 °C 
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Response of Al-doped SnO2 towards 

NO2 in the presence of humidity  



Conclusions 

• NO2 sensing of SnO2 sensors  

• is reasonable well with sputtered thin layers under low 

concentrations and at lower temperatures (250°-400°C) 

• Al-doping improves sensor signal up to 600°C 

• yielding more selective sensing towards NO2 in 

CO+NO2 gas mixtures 

• the presence of humidity (up to 10% RH) shortens the 

response and recovery times drastically and improves 

NO2-sensing at 600°C  

•  indicating a change in adsorption kinetics probably 

due to change in sensing mechanism. 
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• Thank you very much for your attention 

17 
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Suggested R&I Needs for future research 

• Development of SO2 sensors for use at severe environments (e.g. 

volcano ash detection in atmosphere) 

 

• Nanostructured ultra-thin sensing films and top/bottom circuitry for 

room temperature sensing    


