European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir* COST Action TD1105

WGs and MC Meeting at ISTANBUL, 3-5 December 2014

Action Start date: 01/07/2012 - Action End date: 30/06/2016

Year 3: 1 July 2014 - 30 June 2015 (Ongoing Action)

Electrophoretic Au NPs Deposition on Carbon Nanotube Networked Layers for Gas Sensors

Elena Dilonardo, External Expert, elena.dilonardo@uniba.it Università degli studi di Bari Aldo Moro, Bari/ Italy other authors: M. Penza, M. Alvisi, C. Di Franco,

D. Suriano, R. Rossi, F. Palmisano, L. Torsi, N. Cioffi

Background - Motivation

- Involved in 2 National Projects concerning the synthesis of Automotive Exhaust Gas Sensors based on catalytic metal nanopartciles supported on nanostructured materials for monitoring NOx, HCs.
- Background: Electrochemical Synthesis of colloidal metal nanoparticles; Sol-gel synthesis of nanostructured metal oxides (MOx); Electrochemical modification of nanostrucutrued nanostrucutred materials by metal nanoparticles.

Current research activities

ELECTROCHEMICAL FUNCTIONALIZATION OF CNT-BASED GAS SENSORS BY METAL NPs TO IMPROVE GAS SENSING PROPERTIES

Research collaboration with the sensor laboratory of Dr Michele Penza and the thin film laboratory of Dr Marco Alvisi @ENEA in Brindisi

Experimental set-up

CNTs GROWTH By CVD TECHNOLOGY @ENEA THIN FILM LABORATORY

Substrate: film cobalt (Co) nanoclusters, 6 nm thick 1^{st} step: H₂ plasma pretreatment @ 550°C 2^{nd} step: H₂ + C₂H₄ @ 550°C

M. Penza et al., Sens. Actuators B 144 (2010) 387-394

Au-NPs electrochemical synthesis Sacrificial Anode Electrolysis (SAE) @UNIBA

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY N. Cioffi et al., Electrochimica Acta 56 (2011) 3713–3720

Experimental set-up

Electrophoretic deposition of Au NPs on CNTs-based gas sensor device @ UNIBA

E. Dilonardo et al.., J. Sens. Sens. Syst. 3 1–8 2014.

Characterization

Surface Chemical Analysis by XPS @UNIBA

Binding Energy (eV)

SAMPLE	C (%)	Au (%)	O (%)
CNTs as received	95.0 ± 0.5	/	5.0 ± 0.5
Au NPs/CNTs t:90s	94.4 ± 0.5	0.3 ± 0.2	5.3 ± 0.5
Au NPs/CNTs t:600s	91.2± 0.5	1.1 ± 0.2	7.8± 0.5

> Successful electrophoretic decoration of CNT by Au NPs.

> Nano size of gold particles: Au4 $f_{7/2}$ @ 83.4 eV (initial state size effects).

> Fine tuning of Au content by deposition time: increasing of Au loading with the deposition time.

Morphological and Structural analyses @UNIBA

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Characterization

Gas Sensing Measurements @ENEA

Gas: NO_2 - Carrier Gas: Air $t_{exposure}$: 10 min – $t_{recovery}$: 60 min (in Air) $> NO_2$ concentration effect [range: 10-0.1 ppm] $> T_{process}$ effect [range 100-200°C]

✓ NO₂ MEAN SESNITIVITY IS HIGHER FOR Au NPs DECORATED CNTs AT ALL INVESTIGATED T
✓ AuNPs DECORATED CNTs ARE STABLE IN THE INVESTIGATED RANGE OF T
✓ MAXIMUM NO₂ MEAN SENSISTIVITY @ T= 150°C

INTERFERING GASES

> Mix NO₂ + $[H_2S] = 1$ ppm @ T=150°C

✓ High selectivity for NO₂ at low Au content
✓ High selectivity for H₂S at high Au content

CONCLUSION

 ✓ A tunable loading of Au NPs with uniform dimension is efficiently deposited directly on the surface of CNTs-based sensor device by electrophoretic process.
✓ Au NPs functionalized CNTs-based gas sensor have an higher thermal stability than un-functionalized one.

✓ Functionalized CNTs-based gas sensor with low Au content reveals an higher NO₂ sensitivity and selectivity, also for $[NO_2]$ in sub-ppm range.

FUTURE PROSPECTIVES

✓ Investigation of the gas sensing mechanism of Au-functionalized CNTs towards NO_2 and H_2S .

✓ Electrophoretic functionalization of CNTs-based gas sensor devices with other metals and/or metal oxides nanoparticles.

Acknowledgments

The authors thank the Ministry of University and Scientific Research (MIUR) of Italy, for funding *INNOVHEAD* - *Tecnologie innovative per riduzione emissioni, consumi e costi operativi di motori Heavy Duty* - PON 2007-13 (N. contract PON-02_00576-3333604).

THANK YOU FOR YOUR ATTENTION!!

37

#amalabari