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Scientific context and objectives in the Action 

Bad air quality 
causes serious 

problems on 
environment, 

health, society 

Good air quality 
is a key-issue! 

Stringent 
legislation for 

NOx and VOCs 

Adequate control 
of emissions for 
more efficient 
reduction of 

hazardous air 
pollutants 

• Background / Problem statement: +85 % time spent indoor / costly HVAC systems 

 

 

 

 

 

 

• Brief reminder of MoU objectives:  

• WG1: sensor materials and nanotechnology 

• Research on gas-sensitive materials for detection of specific air pollutants 

• Integration in gas sensor devices for indoor AQC 

• Functionalization and surface modification to enhance gas adsorption and sensitivity; 

stability, reproducibility, and selectivity 

• Material characterization (e.g. AFM, SEM) 

• WG2: Sensors, devices and sensor systems for AQC 

• Design, fabrication, testing, characterization of cost-effective high-performance gas sensors 

• Innovative sensor technologies: SiC-FET and graphene-based sensors 

M. Gemelli 
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Current research activities (SiC-FET) 

Sensor processing /  

characterization 

Addressed challenges 
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Current research activities (Graphene) 

As-grown Thin porous metallization
5 nm

1LG

Morphology Surface potential

100 mV

As-grown Au ≈ 5 nm

Morphology Surface potential

Morphology Morphology

Surface potential Surface potential

10 µm  10 µm

1 µm2 1 µm2 1 µm2

1LG2LG

Au ≈ 2 nm Pt ≈ 2 nm Pt ≈ 0-1 nm

1 nm

Sensor processing / characterization 

Sensing mechanisms / device operation Addressed challenges 
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Ongoing research topics 

+15 years experience on high-performance, low-cost FE gas sensors 

for room and high temperature applications, such as  

• car/truck engines and power plants 

• emission monitoring 

• combustion control and exhaust systems 

• indoor air quality applications  
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Why SiC-FET sensors? 

• Chemical inertness 

• Wide band gap (3.26 eV 4H-SiC) 

HARSH ENVIRONMENTS 

HIGH-TEMPERATURE 

OPERATION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n-type 4H-SiC substrate 

p-type buffer layer 

n-type active layer 

S D 

VDS VGS 

- High, stable, reproducible performance - Flexibility when using temperature cycling mode 

- Possibility to use high temperature for regeneration of the sensor surface 



 …No! 
 Yole Développement: transition to 4-inch SiC wafers - a milestone towards reduced cost of SiC technology 
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But SiC is so expensive… 

 The ongoing transition to 6-inch wafers will usher in further cost reduction and SiC market growth 

 4-inch SiC wafer     ~ 1800 chips (cost < 1 euro/each)  

 The ongoing wafer cost reduction and market expansion in SiC will spill over also to EG/SiC  

 Further steps towards cost-efficient preparation of EG/SiC through up-scaling of sample size in 
combination with a novel epitaxy technique allowing growth on inexpensive SiC substrates 



FE sensor platform 
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Gate composed by a porous catalytic metal (Ir, Pt) as sensing layer 

Gas adsorption/reaction 

at the gate contact   

   I-V shift 

Absence of gas 

Presence of gas 

Sensitivity by 

 Number of three phase 

boundaries gas-metal-oxide 

 Adsorption sites on the insulator 

Selectivity by 

 Choice of temperature 

 Different catalytic materials 

 Structure of the metal 

•  FET current controlled by VGS 

•  Gas molecules decompose 

and react on the catalytic metal 

•  Simple electronics  

Cross section of a SiC-FET 

M. Andersson, R. Pearce, A. Lloyd Spetz, 

Sens. & Act. B 179 (2013) 95-106. 



Sensor operation 
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High sensitivity:  

excellent detection limits 
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High selectivity: 

discrimination of VOCs                 

 Multi-dimensional data evaluated by pattern recognition techniques 
 Linear discriminant analysis (LDA) + cross-validation to avoid over-fitting data 
 For on demand ventilation, «below threshold» means ventilation not needed 
 Robust discrimination against changing humidity level and varying concentration of VOCs   
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Innovation – SiC-FET 
• Detection limits under threshold of legal requirements 

• Discrimination and quantification of specific VOCs  

• Stability during long-term operation 
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Morphology Surface potential 

Height (nm)   60 nm ΔVpot (mV)   200 mV 

10 µm 

Insulator Gate Insulator Gate 

ΔVpot (mV)      30 mV Height (nm)    30 nm 

3 μm × 3 µm 

Ir-gate before and after two weeks operation 

 Iridium - Sensing layer not degraded 

is extremely important for our target 

application (indoor AQC) 

Suggested R&I Needs for future research 

Research directions as R&I 

NEEDS: 

 Development of new materials as 

sensing layers using PLD (work in 

progress in cooperation with Univ. Oulu) 



Ongoing research topics 
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Why gas sensors in graphene? 

• Increased sensitivity and reproducibility 

• Functionalization with metal and metal oxide nanostructures for 

selectivity tuning 

• Controlling layer uniformity and doping 

• Effect of surface restructuring during graphene growth on SiC 

• Effect of humidity on sensor performance 

 Unique band structure of graphene leads to a low density of states 
near the Dirac point (ED) – small changes in the number of charge 
carriers result in large changes in the electronic state 

 Every atom at the surface – ultimate surface to volume ratio 

 Low noise, chemically stable (in non-oxidizing environment) – 
enables very low detection limits 

p 

p* 

|e|<1eV 

 Graphene is highly sensitive to chemical gating due to its linear energy 

dispersion and vanishing density of states near the Dirac point and therefore has 

potential as a low noise, ultra-sensitive transducer.  
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manufactures and supplies 

 
Very high quality, wafer scale, epitaxially grown 

Graphene on SiC 

Spin off from 
Linköping University, 

Sweden 
 

22.11.2011 

 Produced by sublimation of Si from SiC in Ar at 2000 ºC   

 Scalable, wafer-size graphene films compatible with standard 
semiconductor processing 

 High thickness uniformity (> 90 % 1LG, rest 2LG) 

 Thickness controlled by temperature 

 



Graphene sensors issues: sensitivity, reproducibility 
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1LG is more 
sensitive to NOx than 

2LG or MLG 

Uniform 1LG 
required for 

maximum sensitivity 
and reproducibility 

Different sensors 
fabricated on 100 % 
1LG show identical 

response  

Epitaxial graphene 
on SiC enables 

highly reproducible 
sensor fabrication 

 NO2 withdraws electrons 

Ambient 1 ppm NO2 

R. Pearce, J. Eriksson, T. Iakimov, L. Hultman, A. Lloyd Spetz, and R. Yakimova, 

ACS Nano 7 (5), pp 4647–4656 (2013) 

Same change in charge carriers causes 
larger shift of the Fermi energy for 1LG 

ΔS depends on thickness due to differing 
band structures for 1LG, 2LG,... MLG  

NO2 sensing interesting 
for: 

• Emission control (few ppm) 

• Air quality control (few ppb) 
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Graphene sensors issues: selectivity, 

response/recovery time 
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Functionalization with metal and metal oxides nanostructures for selectivity tuning 

Aim: To develop a reproducible method for functionalization with metal nano structures 

• Thin layers of Au and Pt DC sputtered onto EG/SiC at elevated pressure 

• Ideally we want islands or nanoparticles to maximize metal-graphene-gas boundaries 

SI 4H-SiC 

on-axis 

Epitaxial graphene 

Au, Pt 
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Effect of Au decoration on sensor response 

Detection limit < 1 ppb NO2 Selectivity: blind to H2 and CO 
J. Eriksson, D. Puglisi, Y. H. Kang, R. Yakimova, A. Lloyd Spetz , Physica B 439 (2014) 105–108 



Innovation - Graphene 
 Reproducible growth 

 Wafer-scale films compatible with standard semiconductor processing 

 High thickness uniformity (> 90 % 1LG, rest 2LG) 

 Decoration changes the surface chemistry but does not alter the 
graphene band structure 
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Suggested R&I Needs for future research 

Research directions as R&I 

NEEDS: 

 Designed nanoparticles by pulsed plasma: 

it is expected that decoration with different 

metals or metal-oxide nanostructures will allow 

careful targeting of selectivity to specific 

molecules 



Designed Nanoparticles by Pulsed Plasma 

 

 Preliminary results show that TiO2 NPs allow enhanced sensitivity towards 
formaldehyde and benzene 

 The effect depends on the size of the deposited NPs  
(< 5 nm, sensitive to benzene; > 50 nm, sensitive to formaldehyde) 

 Plasma-based nanoparticle (NP) synthesis process 

 Highly versatile (metals, metal-oxides, core-shells) and reproducible 
thin film deposition technique 
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Research Facilities available for current research 

• Clean room, ISO 6 (magnetron sputtering, lithography, CVD, etc.) 

• Sensor processing and characterization (gas mixing systems, 

readout electronics, bonding machine, spot welding, scribers, 

thermal evaporation, shadow masks, optical microscopes, AFM, 

SEM, etc.) 

• Hardware and software for data acquisition and data analysis 

• Gas bottles: CH2O, C6H6, CO, NO, NO2, NH3, N2, O2, synthetic air 

• Other facilities available at: Saarland University, SenSiC, 

GraphenSiC 
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Thank you for your attention! 
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(Looking forward to see you in Linköping!) 


