European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir*

COST Action TD1105

WGs and MC Meeting at ISTANBUL, 3-5 December 2014

Action Start date: 01/07/2012 - Action End date: 30/06/2016

Year 3: 1 July 2014 - 30 June 2015 (Ongoing Action)

New Methods for Control of Nanoparticles in Indoor (or outdoor) Environment

Anita Lloyd Spetz

Deputy Chair

Linköping University, Sweden and

University of Oulu, Finland

Allowed levels of emissons of toxic gas molecules and particles are today very low Sensors systems for control are needed

Toxic substances include: NO_x, SO₂, CO, O₃, PAH/VOC, PM₁₀, PM_{2.5}, PM₁

Outline

Development of a particle detector:

LTCC technology based particle detector
Integration of functionality in LTCC packaging
Heating and detection of emissions

LTCC Technology for particle sensing

- H. Jantunen, R. Rautioaho, A. Uusimäki, S. Leppävuori, Preparing low-loss low-temperature cofired ceramic material without glass addition, J of the American Ceramic Society, 83,11 (2000),2855-2857.
- M. T. Sebastian and H. Jantunen, Low loss dielectric materials for LTCC, applications: a review, International Materials Reviews 53, 2 (2008) 57-90.
- Maciej Sobocinski, Mikko Leinonen, Jari Juuti, Noora Mantyniemi, Heli Jantunen, A co-fired LTCC–PZT monomorph bridge type acceleration sensor, Sensors and Actuators A, 216 (2014) 270-275.

Vision

Miniaturized device for the on-line monitoring of particles for

- Work places (specific)
- Public use (general)

Giving information about particle number (concentration), size, "shape", and content since these parameters influence the adverse health effect of particles

Nanoparticle detector LTCC platform - overview

Particle content meausurment set up

Saarland University

Detection of particle content

Mass spectra of fly ash with 84 mg/kg ammonia when heated to 430 °C (left) and 860 °C (right). (C. Bur et al, poster session)

Integration of SiC-FET during LTCC processing

SiC-FETs and MOS gas sensors

Cross section of SiC-FET gas sensor Gate sensing layer: porous catalytic metal, Pt, Ir

AFM micrograph of V_2O_5 + V_7O_{17} mixed phase material for MOS gas sensor for NH₃ sensing

Humidity content of nanparticle detector Differential calorimeters

M. Tuhkala, J. Juuti, and H. Jantunen, Use of an open-ended coaxial cavity method to characterize powdery substances exposed to humidity, Applied Physics Letters 103 (2013) 142907

J. Kita, W. Missal, E. Wappler, F. Bechtold, R. Moos, Development of a miniaturized Ceramic Differential Calorimeter device in LTCC Technology, J. Ceramic Science and Technology, 04, 03 (2013)137-145 (Device based on 2 cavities, one is reference, the other is used to heat powder. The dynamic heat flux is measured)

Conclusions

- (Toxic gases and) airborne nanoparticles need to be monitored for environmental control
- LTCC technology is a powerful method for a cost efficient particle detecor
- The content of nanoparticles is important to measure. Our present approach is based on LTCC technology with integrated gas sensors and finger electrodes and measurement capability like impedance spectroscopy or heating particles and subsequent detection of the emissions

Acknowledgement

- Grant support is acknowledged from:
- The VINN Excellence Center in Research & Innovation on Functional Nanostructured Materials (FunMat)
- The Swedish Agency for Innovation Systems (VINNOVA)
 COST ACTION TD1105
- The Swedish Research Council
- TEKES (Finland)
- Academy of Finland

European Network on New Sensing Technologies for Air-Pollution Control and Environmental Sustainability

Acknowledgements

Applied Sensor Science at

Linköping University

Prof. Anita Lloyd Spetz Associate Prof. Mike Andersson Dr. Robert Bjorklund Assistant Prof. Jens Eriksson Assistant Prof. Donatella Puglisi Dr. Zhafira Darmastuti, post doc Christian Bur, PhD student Hossein Fashandi, PhD student Peter Möller, PhD student/ research engineer

Microelectronics and Material Science Laboratories, University of Oulu Prof. Heli Jantunen Prof. Jyrki Lappalainen Prof. Anita Lloyd Spetz Associate Prof. Jari Juuti Associate Prof. Mike Andersson Dr Niina Halonen, post doc Joni Huotari, PhD student Maciej Soboskinskij, PhD student

Laboratory for Measurement Technology, Saarland University Prof. Andreas Schütze Christian Bur, PhD student

WG&MC Meeting, Linköping University, Sweden 3-5th of June, 2015

The Physics Building hosting part of Dept of Physics, Chemistry and Biology

