European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - EuNetAir COST Action TD1105

Fourth Scientific Meeting – Linköping, June 3 - 5, 2015

Action Start date: 01/07/2012 - Action End date: 30/06/2016

Year 3: 1 July 2014 - 30 June 2015 (*Ongoing Action*)

Plenary Session 2: Indoor Environment Quality Applications

FP7 SENSIndoor - Increasing Sensitivity and Selectivity

of Gas Sensor-Systems by Using Micromachined Pre-Concentrators with MIP and MOF Layers

Andreas Schütze
WG2 leader, MC member
Saarland University / Germany

EUROPERN ESF provides the COST Office through a European Commission contract

> Background: Indoor Air Quality

Why worry about indoor air?

- Safety
 - Gas leak detection (combustible gases, e.g. CH₄)
 - Fire detection (various gases)
 - Hazardous gas detection (e.g. CO)
- Malodor detection (kitchen & bathroom ventilation)
- HVAC systems
 - Reduced air circulation for greatly reduced energy consumption
 - ➤ CO₂ monitoring for fresh air
 - Mold detection / prevention
 - Increased levels of VOCs lead to sick building syndrome
 - Selective (formaldehyde, benzene etc.) and sensitive (ppb level) detection
 - Systems have to be adapted to the specific room use scenario

> Research projects focused on IAQ

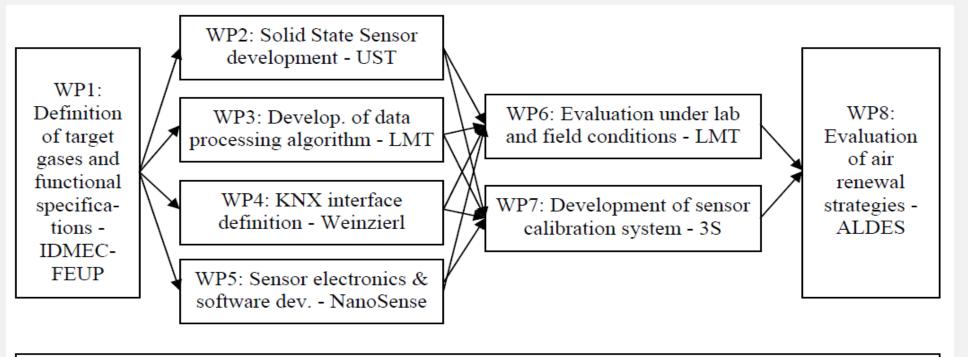
VOC-IDS: Volatile Organic Compound Indoor Discrimination Sensor

- Transnational project funded within MNT-ERA.net
- Selective VOC detection, primarily formaldehyde, benzene
- Novel ceramic nanomaterial metal-oxide semiconductor gas sensors
- Intelligent signal processing based on temperature cycling
- Networked systems connected to KNX bus

SENSIndoor: Nanotechnology based intelligent multi-SENsor System with selective pre-concentration for Indoor air quality control

- EU-FP7 project NMP.2013.1.2-1:
 Nanotechnology-based sensors for environmental monitoring
- Microtechnology based approach for MOS and SiC-GasFET sensors
- Pre-concentration to boost sensitivity and selectivity
- Integrated multi-sensor approach
- Application specific priorities and field tests

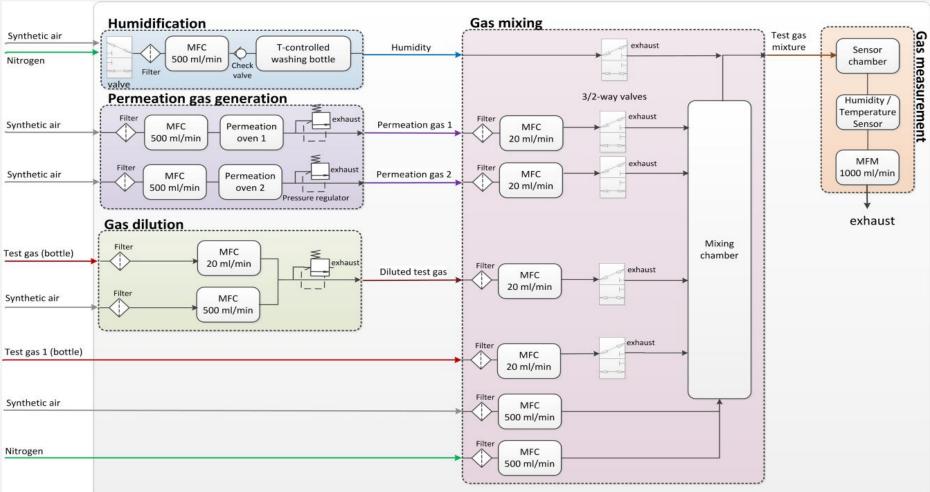
> Indoor Air Quality monitoring



mnt-era.net

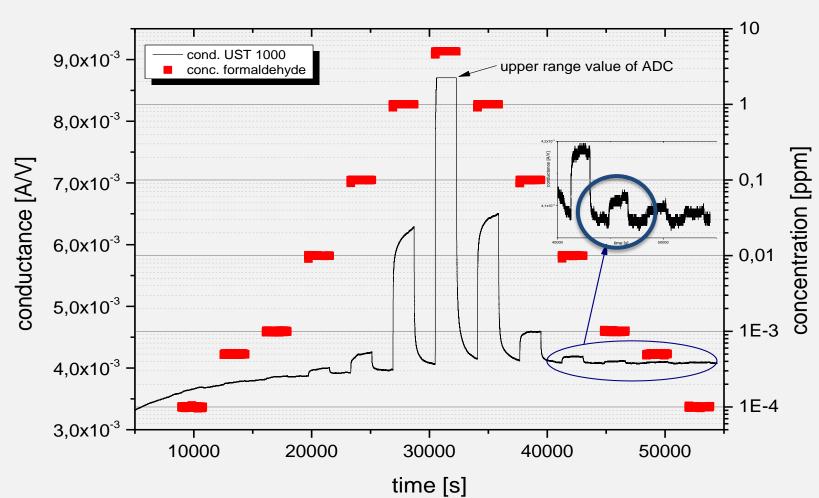
MNT-ERA.net project VOC-IDS

- Volatile Organic Compound Indoor Discrimination Sensor
- Scenario specific detection of hazardous VOC
- Integration of sensor system into KNX building automation networks


WP9: Project coordination (incl. joint IPR strategy, input to standardization, dissemination) - LMT

> Gas measurement systems – more than sensors

First step: novel gas mixing system for VOC testing/calibration @ (sub) ppb-level


N. Helwig et al.: Gas mixing apparatus for automated gas sensor characterization, Meas. Sci. Technol. 25 (2014) 055903

Gas measurement systems – more than sensors

Novel gas mixing system: results of first sensor tests

Sensor reaction to 1 ppb formaldehyde

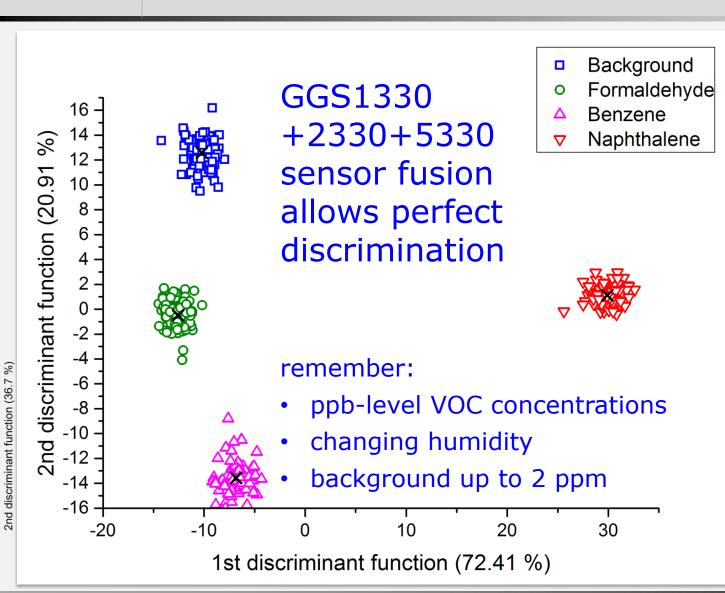
Relevance?
Legal limits in
France for
indoor air:
Formaldehyde
25 ppb in 2015;
Benzene
0.6 ppb in 2016

N. Helwig et al.: Gas mixing apparatus for automated gas sensor characterization, Meas. Sci. Technol. 25 (2014) 055903

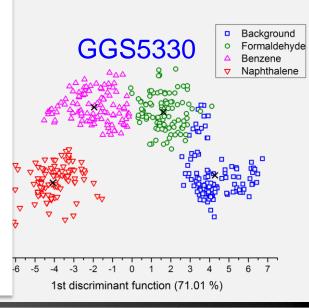
> Indoor Air Quality monitoring

MNT-ERA.net project VOC-IDS

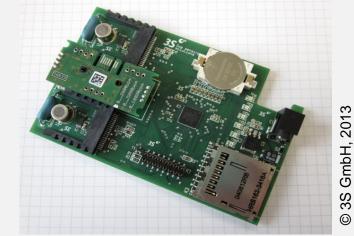
- Example for selective detection of VOCs in interfering background
- Classification of formaldehyde, benzene, naphthalene in the presence of ethanol


target gas	Concentration (ppb)	humidity	Interferents (EtOH ppm)
Air	NA	40%, 60%	none, 0.4, 2
Formaldehyde	10, 100	40%, 60%	none, 0.4, 2
Benzene	0.5, 4.7	40%, 60%	none, 0.4, 2
Naphthalene	2, 20	40%, 60%	none, 0.4, 2

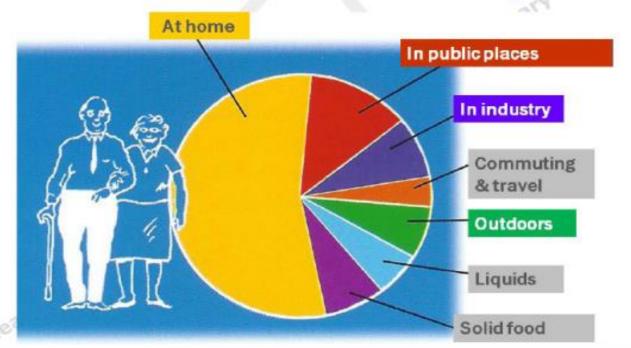
Classification target	interferent concentrat.	relative humidity	number of LDA steps for charac.	Estimated # of LDAs		
generalized classification	0, 0.4, 2	40%, 60%	1	1		
classification w known r.h.	0, 0.4, 2	known	1 (2)	(1+) 5*1		
classification w known EtOH	known	40%, 60%	2	1+10(?)*1		


> IAQ monitoring with MOS sensors

> IAQ monitoring: field test systems


- Stand-alone field test systems by 3S GmbH (Saarbrücken, Germany)
- 2 MOS gas sensors (+ CO_2 + humidity) with independent temperature control
- Data storage on SD card
- Conclusion of field tests: even better sensitivity and selectivity required!

Setup for system calibration

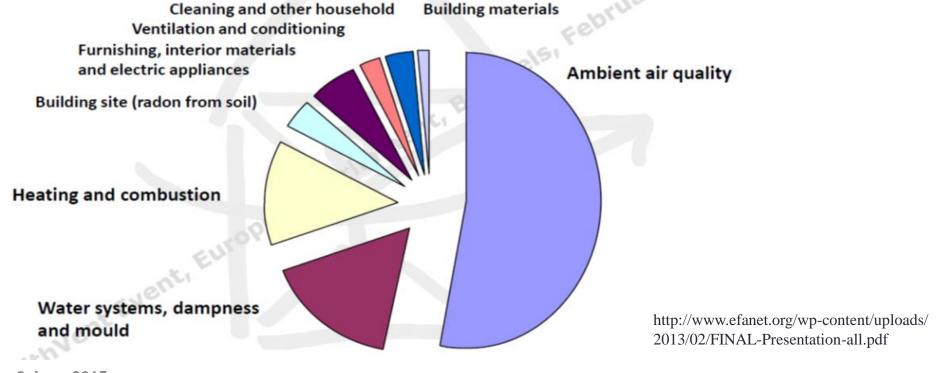


Motivation

Core motivation for the SENSIndoor project

GUIDELINES FOR HEALTH-BASED VENTILATION IN EUROPE - HEALTHVEN

Indoor air is significant contributor to life-time exposures



Motivation

Core motivation for the SENSIndoor project

2 Mio healthy life years are lost every year in the EU due to indoor exposure according to an analysis in the EU project EnVIE

Motivation

- People spend more than 80 % of their time indoors where fresh air exchange is increasingly limited to reduce energy consumption.
- Indoor air pollution contributes significantly to the global burden of disease.
- Continuous ventilation would greatly increase energy consumption for HVAC (heating, ventilation, air conditioning) systems.
- Low-cost sensor systems are required to provide ubiquitous Indoor Air Quality (IAQ) monitoring.
 - Core motivation for the SENSIndoor project

Sensor system requirements 1

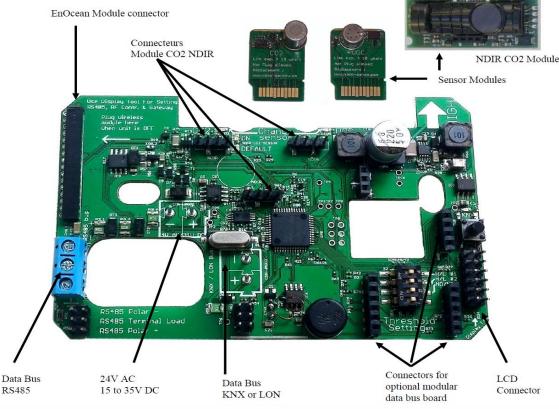
- Demand controlled ventilation to achieve optimal compromise between energy efficiency and health benefits adapted to specific application scenarios
 - room-specific measurements required
- Significant contribution to EU 20-20-20 goals and health aspects of IAQ targeted
 - ubiquitous measurements required
- > Core challenges addressed with micro- and nanotechnologies
 - microtechnologies for low cost mass production (and low power consumption)
 - nanotechnologies for unrivalled sensitivity and selectivity

Sensor system requirements 2

- Detection of hazardous indoor air pollutants at relevant levels
 - key target pollutants are VOCs, i.e. formaldehyde, benzene,...
 - target concentrations are ppb and sub-ppb level
 - extremely high sensitivity required

	2012						2013 2015							2023					
	MAK work place (8 hours) TRK work			-	Domestic (MAK/3) 24h/24h			Fren	French decree n° 2011-1727 of 2/12/2011 long-term guide value for public buildings										ings
	ppm	mg/m3	ppm	mg/m3	ppm	ppb	mg/m3	ppm	ppb	μg/m3	ppm	ppb	μg/m3	ppm	ppb	μg/m3	ppm	ppb	μg/m3
Formaldehyde	0.5	0.615	1	1.23	0.17	166.67	0.21				0.024	24.39	30.00				0.008	8.13	10.00
Benzene	1	3.25	1	3.25	0.33	333.33	1.08	0.00154	1.54	5.00				0.00062	0.615	2.00			

- In addition: many other interfering gases/VOCs
 - benign, e.g. ethanol, air freshener (much higher concentrations!)
 - unpleasant, but not hazardous, e.g. isovaleric acid
 - other background gases, e.g. CO, O₃, NO_x, ammonia, ...
 - extremely high selectivity required

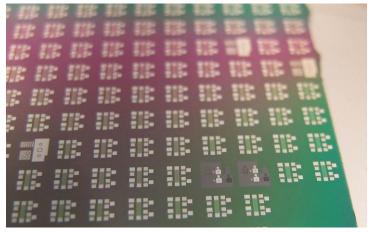


State-of-the-art

- Demand controlled ventilation today
 - mostly CO₂ monitoring, at best total VOC (TVOC)
 - CO₂ based on IR absorption or solid state electrolyte
 - TVOC based on metal oxide semiconductor (MOS) sensors

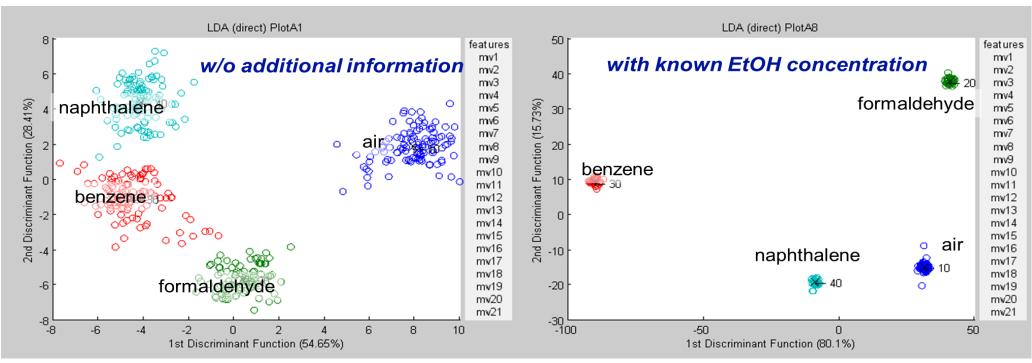
E4000 Air Quality Probe (NanoSense SARL)


SENSIndoor origins

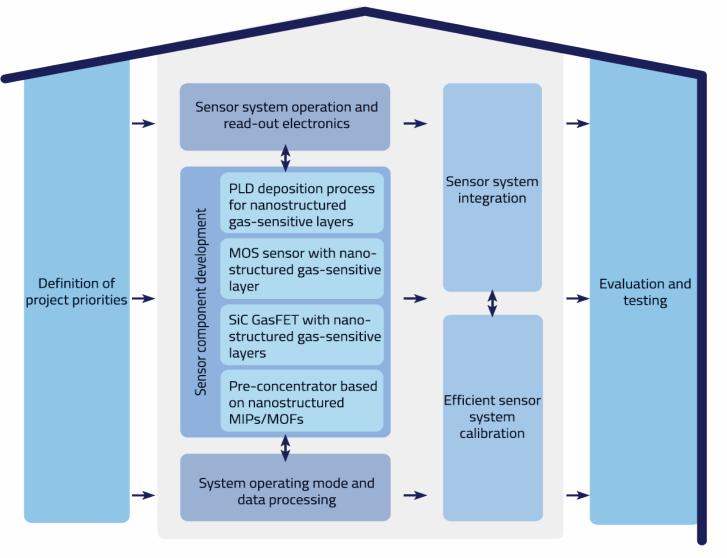

- VOC-IDS (MNT-ERA.net collaborative project)
 Volatile Organic Compound Indoor Discrimination Sensor
 - Partners: USAAR-LMT, IDMEC-FEUP Instituto de Engenheria Mecânica, University Porto (P), UST Umweltsensortechnik GmbH (D), 3S GmbH (D), NanoSense SARL (F), Weinzierl Engineering GmbH (D), CIAT - Compagnie Industrielle d'Application thermique S.A. (F), ALDES Aéraulique S.A. (F)
- COST action TD1105 EuNetAir
 European Network on New Sensing Technologies for Air-Pollution Control and Environmental Sustainability
 - Partners: U Linköping (A Lloyd Spetz: vice chair of action), U Oulu, USAAR, 3S GmbH, SenSiC AB, SGX Sensortech S.A.
 - Several topics identified to be addressed in call NMP.2013.1.2-1
 Nanotechnology-based sensors for environmental monitoring

SENSIndoor technologies 1

- Sensor technologies
 - MOS Metal oxide semiconductor (SGX Sensortech, USAAR-LMT)
 - well known for high sensitivity and robustness @ low-cost
 - MEMS technology for mass production and low power consumption
 - GasFET Gas-sensitive Field
 Effect Transistors (LiU, SenSiC)
 - complementary technology (polarity ⇔ reaction)
 - SiC technology for chemical robustness and high operating temperatures

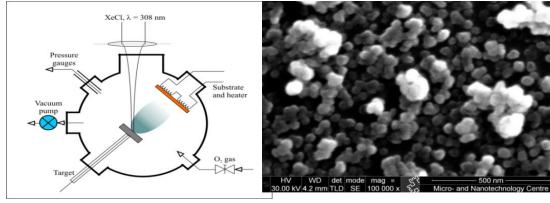


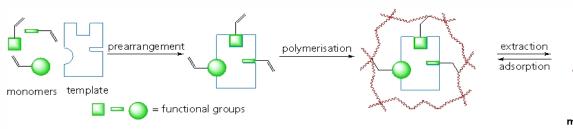
SENSIndoor technologies 2

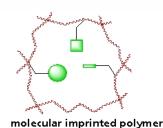

- Dynamic operation and intelligent signal processing
 - Temperature Cycled Operation (USAAR-LMT, NanoSense, 3S)
 to increase selectivity ("virtual multisensor") and stability

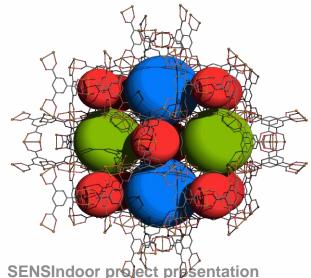
SENSIndoor overview

Project structure:
A clear road from application requirements to field evaluation

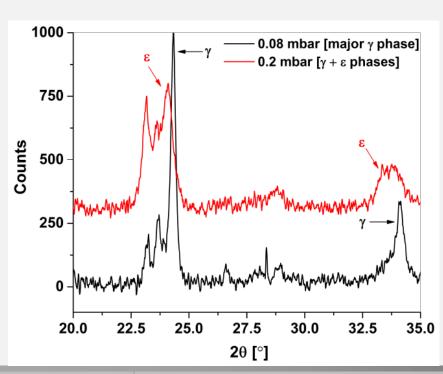


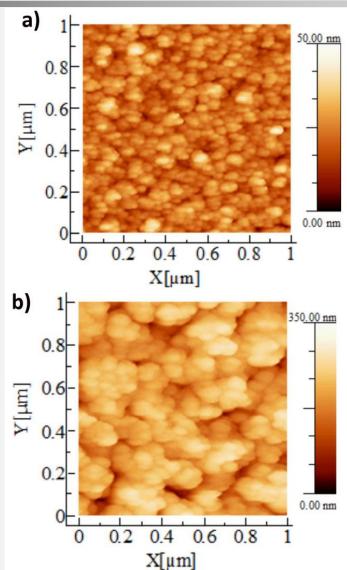

SENSIndoor technologies 3


- Nanotechnology for improved sensor elements
 - Pulsed Laser Deposition


 (U Oulu, Picodeon)
 for novel, highly sensitive gas-sensitive layers
 suitable for wafer level mass production

Selective pre-concentration (FhG-ICT)
 based on MOFs (metal-organic frameworks) →
 and MIPs ↓ (molecular imprinted polymers)





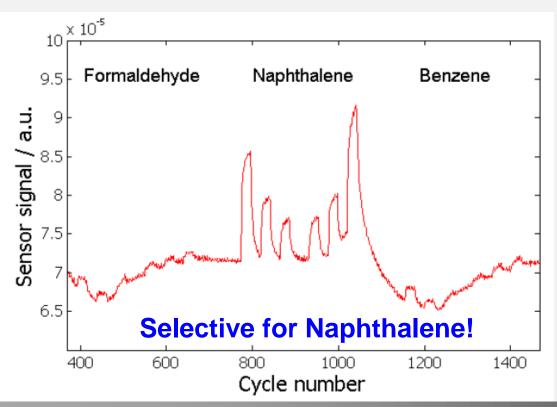
Depositions of WO₃ layers

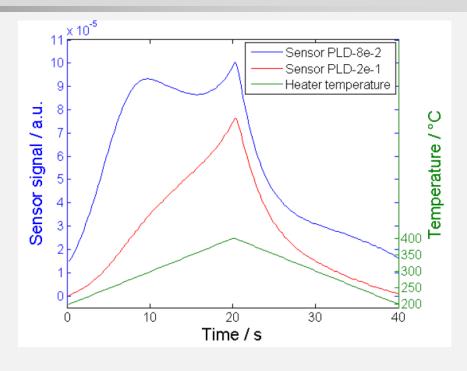
(Oulu University w 25 ns laser)

 Characterized w AFM → and XRD

M. Leidinger, J. Huotari, T. Sauerwald, J. Lappalainen, A. Schütze:
Nanostructured WO₃
Semiconductor Gas Sensor for Selective Detection of Naphthalene,
SENSOR 2015, Nuremberg,
May 19 – 21, 2015.

22





Testing with ppb level VOCs

(Saarland University)

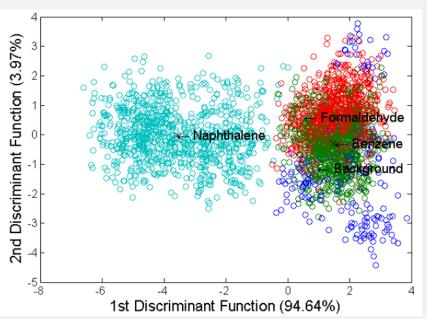
- Simple temperature cycle →
- Quasi-static signal @ max. temp.

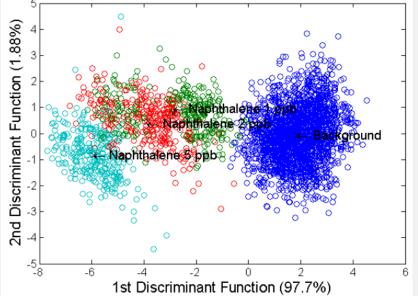
M. Leidinger, J. Huotari, T. Sauerwald, J. Lappalainen, A. Schütze:

Nanostructured WO₃ Semiconductor Gas Sensor for Selective Detection of Naphthalene,

SENSOR 2015, Nuremberg, May 19 – 21, 2015.

23




SENSIndoor

Identification and Quantification using LDA

(Saarland University)

Sensor deposited at 0.2 mbar O₂ pressure

LOOCV: Naphthalene 99%

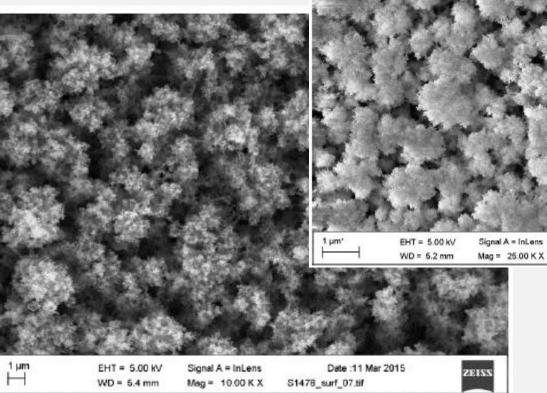
background + 5 ppb: 95%

Note: data include **changing r.h.** and **ethanol** (up to 1 ppm)

COST action TD1105 EuNetAir – 4th Scientific Meeting – June 3 - 5, 2015, Linköping

M. Leidinger, J.
Huotari, T. Sauerwald,
J. Lappalainen, A.
Schütze:
Nanostructured WO₃
Semiconductor Gas
Sensor for Selective
Detection of
Naphthalene,
SENSOR 2015,
Nuremberg, May 19 –
21, 2015.

COST action TD1105 EuNetAir – 4th Scientific Meeting – June 3 - 5, 2015, Linköping



Next generation: SnO₂ and WO₃ w catalyst layers

(Picodeon w ps laser)

- $SnO_2 \rightarrow$
- WO_3

- V. Kekkonen, J. Liimatainen,
- S. Chaudhuri, T. Sauerwald,
- A. Schütze:

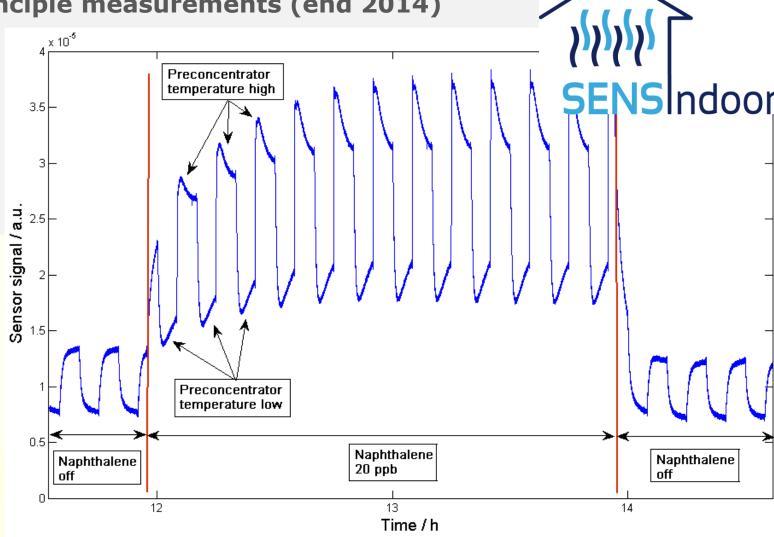
Engineered metal and metal oxide gas sensor layers by pulsed laser deposition technology,

IEEE SENSORS 2015, Busan, Nov. 2015, submitted.

Date :13 May 2015

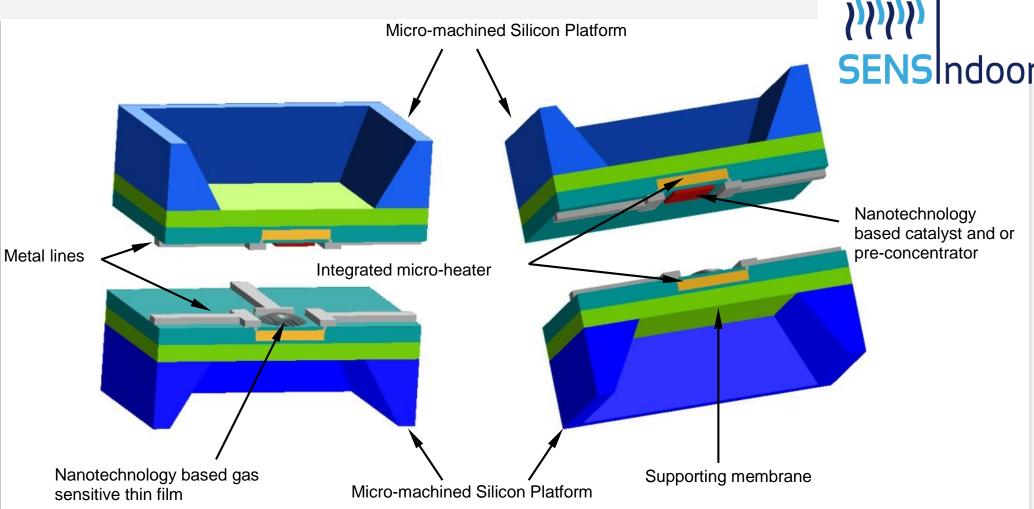
S1634_surf_12.tif

> µ-pre-concentrator: proof of concept



First proof-of-principle measurements (end 2014)

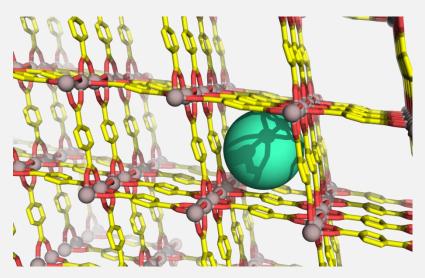
- preconc. off: signal low, then increases
- preconc. on: signal high, then decreases

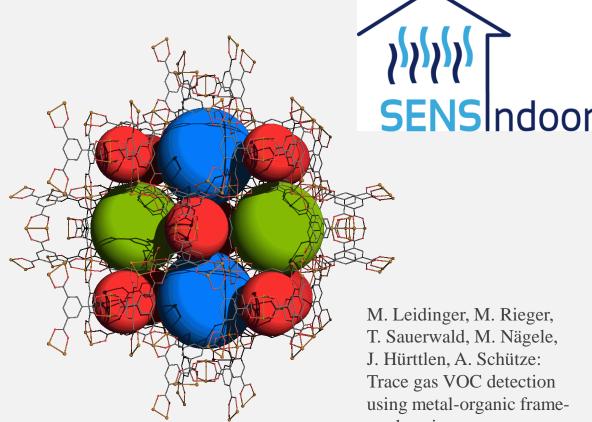


> µ-pre-concentrator

Miniaturization (concept): μ-hotplate for pre-concentrator

> µ-pre-concentrator




MOF layers deposited

(Fraunhofer ICT)

HKUST-1

MIL-53

M. Leidinger, M. Rieger, T. Sauerwald, M. Nägele, J. Hürttlen, A. Schütze: Trace gas VOC detection using metal-organic frameworks micro pre-concentrators and semiconductor gas sensors,

EUROSENSORS 2015, Freiburg, Sep.. 2015, submitted.

CONCLUSIONS

CONCLUSIONS:

- Both MOS and GasFET sensors highly sensitive for VOC
- TCO allowing discrimination and quantification
- Micro- and nanotechnologies for excellent functionality at low cost
- µ-pre-concentrator: promising concept for IAQ applications
- Ubiquitous low-cost sensor systems for IAQ realistic

OUTLOOK:

- Extensive field testing required: calibration and reliable operation
- Priority application scenarios: schools/kindergarten, refurb. homes

European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - EuNetAir COST Action TD1105

Fourth Scientific Meeting – Linköping, June 3 - 5, 2015

Action Start date: 01/07/2012 - Action End date: 30/06/2016

Year 3: 1 July 2014 - 30 June 2015 (Ongoing Action)

Increasing Sensitivity and Selectivity of Gas Sensor-Systems by Using Micromachined Pre-Concentrators with MIP and MOF Layers

Andreas Schütze WG2 leader, MC member Saarland University / Germany schuetze@LMT.uni-saarland.de

EUROPERN ESF provides the COST Office CEINCE through a European Commission contract

IROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY