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Research activities at DLR 
• Total NOx sensing by means of component integrated impedance-metric 

sensors 
 

 M. Stranzenbach and B. Saruhan, Equivalent circuit analysis  

 on NOx impedance-metric gas sensors, Sensors and Actuators  

 B: Chem., 137(1) 154-163, 2009 

 M. Stranzenbach; E. Gramckow and B. Saruhan, Planar,  

 impedance-metric NOx sensor with spinel-type SE for high temperature  

 applications, Sensors and Actuators, B: Chem., 127, 224-230, 2007 

 

• Impedance-metric sensors having NiO and Ni-spinel-SE and YSZ-electrolytes has a great potential as high 

temperature total NOx sensors for use in and harsh environment gas sensing applications. The applicability of 

the total impedance is proven to yield reliable sensor signal.  
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Research activities at DLR 

• Effect of Al-doping of TiO2 on high-temperature NO2-sensing 

 

 B. Saruhan A. Yüce, Y. Gönüllü and K. Kelm,  

 Effect of aluminium doping on NO2 gas  

 sensing of TiO2 at elevated temperatures,  

 Sensors and Actuators, B 187 (2013) 586-597. 

 

• NO2 sensing at elevated temperatures (600°-900°C) by the use of Al-doped 

TiO2 sensing layers and catalytic self-regenerative Perovskite layers  
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Research activities at DLR 

• Nano-tubular TiO2-sensor electrodes for NO2 and CO sensing at intermediate 

temperatures (300°-500°C) 
 

               
 Y. Gönüllü, C.G. Mondragón Rodríguez,  

 B. Saruhan, M. Ürgen, Improvement of gas  

 sensing performance of TiO2 towards NO2  

 by nano-tubular structuring,  

 Sensors and Actuators B: Chem.,  

 Vol.:169, 2012,151–160 

 

 

 

 

 

 

 

 Y. Gönüllü, A.A. Haidry, B. Saruhan,  

 Nanotubular Cr-doped TiO2 for use as  

 high-temperature NO2  gas sensor,  

 Sensors and Actuators B: Chem.,  

 in press, online available since Nov. 2014 

 

16 µm 

2 µm Cr3+-doped TiO2 Nano-

Tubular annealed at 700°C 

500°C 

Un-doped TiO2 Nano-

Tubular annealed at 

700°C 

500°C 



Content 

• Objectives of the present work 

• Research facilities at DLR-WF (Cologne) 

• Applied sensor configurations 

• Reactive sputtering of doped TiO2 

• Microstructure and Phase conditions 

• NO2-sensing of TiO2 and Cr-doped TiO2 with three different 

configurations 

• On interdigital Electrodes (IDE) 

• With Top-Bottom Electrodes (TBE i.e. resistive switching) 

• By nanostructuring and parallel top electrodes 

 

• Past research activities at DLR-WF on gas sensors 
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Objectives of the present work 

• TiO2 is a n-type semiconductor and can be used for gas sensing  

• But there are problems in terms of sensor response and sensitivity 

towards oxidizing gas NO2 

• Doping with M3+ (Al, Cr) improves sensor signal and sensitivity yielding 

a p-type sensor response 

• However 

• Higher temperatures are needed for reasonable signal (>>400°C) 

 

• This work deals with  

• Application of different sensor designs  

• Effect of sensor layer type on NO2-sensing (semiconductor, dopant, 

nanostructuring) 

• Low temperature NO2 sensing with semiconductor undoped and 

doped TiO2 
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Research Facilities at DLR: Coating 
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Research Facilities at DLR: Sensor testing 

SESAM – Sensor and Catalyst Test Unit 
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•  5 MKS  MFC  

•  Control unit for up to 8 

MFCs 

• Test gases: NOx, COx, 

CH4, N2, O2, H2, etc. 

• Carrier gas: N2, Ar, Air,  

• Max. flow 1000 sccm/min. 

 

Gas mixture unit 

• Test gases: Water 

vapour, HCs 

•  Heating system of 

tubes for gas flow 
Sensor and catalyst chamber 

• computer controlled tubular furnace 

(CARBOLITE)  up to 1200 °C,  

• Quart-glass  recipient stable up to 1300 °C,  

• 3 m for heating of gas mixture 

• Flexible sample geometry (max. 50 mm) with 

variable interior 

 

Gas analyzer Unit 

• Multi-gas detector from 

ABB and Pfeiffer 

• Test up to 6 test gases 

simultaneously:  NO, NO2, 

CH4, CO, CO2, H2,  

 

Sensor Characterization 

•  Impedance spectroscope SOLARTRON 

 1255b and Potentio-stat  Solartron1286 

•  Frequency range: 10µHz – 1MHz 

•  Frequency resolution: 10µHz 

•  Impedance range: 0 – 100 MΩ 

•  DC- Bias range:  50V 

•  Computer controll over IEEE 488  Interface 



Applied Sensor Electrode Configurations 

- Pt-InterDigital sensor Electrode (IDE) 

 

 

 

 

- Pt Top Bottom Electrode (TBE) 

 

 

 

 

- // Pt sputtered Electrode (PE) 
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Reactive Sputtering of undoped and doped 

TiO2 layers 
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Sensing layers 

on screen printed 

interdigital electrodes 

Oxygen gas as 

reactive source 

Ti- and Al-Targets 

Reactive Magnetron Sputter Chamber 

Sensing layers 

between Pt Top 

Bottom Electrodes  



Microstructure and phase conditions of sputtered 

undoped TiO2 
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As-coated  

1000°C  

TiO2 -Layer 

Al2O3 -Substrate 



Microstructure and phase condition of sputtered 

Cr-doped TiO2 (TiO2:Cr) 

12 
1000°C  

As-coated  

800°C  

Cr-doped TiO2 -Layer 

Al2O3 -Substrate 
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NO2-response of TiO2-layer sputtered on IDE 

Towards NO2-concentrations 

of 25, 50,100 ppm in Argon 

Towards NO2-concentrations 

of 50, 100, 200 ppm in Argon 
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• NO2-response of sputtered TiO2 is present but very 

irregular at temperatures of 400°C to 600°C 

• NO2-Sensor with undoped TiO2 layer sputtered on 

IDE has no sensing ability at temperatures below 

400°C  

• shows poor response at temperatures above 400°C 

• better response with low sensitivity at 600°C 

• TiO2 layer thickness is 1.7 µm 
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NO2-Concentrations  

of 50, 100, 200 ppm in Argon 

NO2-response of TiO2:Cr-layer sputtered on IDE 
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• NO2-response is improved by doping sputtered 

TiO2 with 5 at.% Cr (TiO2:Cr) at temperatures 

above 400°C 

• Sensor response has low resolution with 

concentration at 400°C 

• Best sensor response is achieved above 500°C 

• TiO2 layer thickness is 1.5 µm 
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• At 400°C: NO2-sensitivity of sputtered TiO2:Cr-layer appears lower than 

sputtered TiO2,  

• However sensor response of undoped TiO2 at 400°C is very irregular and 

indicates poisioning on high concentration of gas exposure 

• Above 500°C: NO2-sensitivity of sputtered TiO2:Cr-layer increases steadily 

and yields a reasonably well sensor response  

• Sensor with TiO2:Cr layer sputtered on IDE can be used above 500°C 

Sputtered TiO2 vs. Sputtered TiO2:Cr on IDE 
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450°C 

TBE 

NO2-response of TiO2 sputtered between TBE 

450°C 

TBE 

• NO2-response of TiO2 layer sputtered between TBE is improved but there is 

still slow recovery at 450°C 

• At temperature below 400°C, NO2-Sensor with undoped TiO2 layer 

sputtered between TBE has also no reasonable sensing ability 

• Sensor behavior at temperatures above 450°C are under investigation 

 

• TiO2 layer thickness is 2.1 µm 



• NO2-response of TiO2 with 2.2 at.% Cr (TiO2:Cr) sputtered between TBE yields good 

sensor response with high sensitivity at temperatures as low as 200°C 

• The sensitivity for 50 ppm NO2 is a factor of  5X102 higher than that achieved with 

same sensor material on IDE 

• The baseline-resistance decreases on exposure to NO2-concentrations above 200 

ppm.  

• The investigation to understand the cause of this and similar phenomena is under way. 

17 • TiO2 layer thickness is 1.8 µm 

NO2-response of TiO2: 2.2 at.% Cr-layer 

sputtered between TBE 



Principle of TBE „Resistive Switching“ 
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- On change of the charge loading direction, the polarity 

gains importance and plays great role in sensing 

- Electron flux is influenced by  

- polarity,  

- electrode material and dimensions and  

- semiconductor layer thickness.  

Electric field 

generated by 

electron flux  

sensing 

layer 

Electron flux  
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Cr 
Ti Ti 

Microstructure of Nano-Tubular TiO2:Cr (2.4 at.%) 

Undoped nano-tubular TiO2 after annealing at 700°C 

TiO2-NT soaked in Cr(NO3)3-sol for 5h and annealed at 450°C and 700°C 

Cr3+-doped nano-tubular TiO2 after annealing at 700°C 

Ti 

16 µm 
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Un-doped TiO2 NT 

annealed  at 700°C 

300°C Un-doped TiO2 NT 

annealed at 700°C 

500°C 

NO2-sensitivity of TiO2 -NTs with // Pt-electrodes  

• TiO2-NTs yields sensor response towards relatively lower NO2 

concentrations at temperatures between 300°C - 500°C 

• Some drift is present 

• TiO2 NT-layer thickness is 12 µm 
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• NO2-sensitivity of TiO2:Cr NTs reduces with 

temperature and becomes low at 500°C 

• Sensor response is more steady at 500°C, 

however the resolution with concentration is poor 

• Optimum sensor response is achieved at 400°C  

Concentration (ppm) 

Cr3+-doped TiO2 Nano-Tubular 

annealed at 700°C 

300°C 

Cr3+-doped TiO2 Nano-Tubular 

annealed at 700°C 

500°C 

NO2-sensitivity of TiO2:Cr-NT with // Pt-electrodes  



Conclusions 

• TiO2 yields n-type sensor response with all three sensor configuration 

and after nano-structuring 

• Cr-doping of TiO2 converts the sensor behavior from n-type to p-type 

• Sputtering facilitates doping of semiconductor oxides with various 

contents and the manufacturing of good quality sensing layers suitable 

to lithography and MEMS-processing  

• TBE sensor configuration enables NO2 sensing at temperatures as 

low as 200°C with high sensitivity (10X102) 

• Nano-structuring of TiO2 yielding tubes (NTs) with 70 nm pore 

diameters and 10 nm wall thickness leads to better sensing response 

• Wet-chemical Cr-doping of TiO2 NTs improves the sensor response 

and enables NO2 sensing at 300°-500°C 
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Suggested R&I Needs for future research 

• Polarity effects 

• Effects of electrode size and structure 

• Catalytic effects of Pt on sensing 

• Analysis the role of each sensor element by means of 
Impedance Equivalent Circuit Fitting  

• Characterization of electronic state (work function, band gap 
structure) 

• Understanding the reasons leading to sensor poisoning 
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