European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir*

COST Action TD1105

WGs and MC Meeting at LINKOPING, 3 - 5 June 2015

Action Start date: 01/07/2012 - Action End date: 30/06/2016

Year 3: 1 July 2014 - 30 June 2015 (Ongoing Action)

GRAPHENE GAS SENSORS ENHANCED BY UV LIGHT AND PULSED LASER DEPOSITION

Raivo Jaaniso

MC Member University of Tartu / Estonia

Motivation

- High potential of graphene responses to single gas molecules have been demonstrated
- For fully exploiting the potential of graphene new approaches are required for increasing the sensitivity in real atmospheric measurements and for making the devices (partially) selective to different target gases
- In the present work, we demonstrate the functionalization of single layer graphene by pulsed laser deposition (PLD) and its impact on the sensing properties to NO₂ gas in case of different deposited materials

University of Tartu

17 500 students1700 academic staff

Founded 1632 by Swedish King Gustav Adolf II

Institute of Physics

New Physicum - 2014

Graphene

- 2D material, 1/2 fully exposed to environment
- High charge carrier mobility (500-10000 cm²V⁻¹s⁻¹ for CVD graphene on substrate), low noise

Detection of single gas molecules

Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, K. S. Novoselov, Detection of individual gas molecules adsorbed on graphene, Nat. Mater. 6 (2007) 652-655.

Activation of sensitivity in ambient conditions – O₂

A. Berholts, T. Kahro, A. Floren, H. Alles, R. Jaaniso. Photo-activated oxygen sensitivity of graphene at room temperature. Appl. Phys. Lett. 105, 163111 (2014).

Activation of sensitivity in ambient conditions – NO₂

A. Berholts, T. Kahro, A. Floren, H. Alles, R. Jaaniso. Light-activated gas sensitivity of graphene in ambient conditions. Graphene Week 2014, 23-27 June, Göteburg, Sweden.

Modelling

- Plain graphene:
 - very limited adsorption possibilities
 - small adsorption energies (O_2 0.2 eV, NO_2 0.4 eV)
- Defects and edges
 Doping
 Y. Zou et al. Eur. Phys. J B 81,475, 2011.

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Functionalization by pulsed laser deposition (PLD)

- Target can be any solid material
- Particle kinetic energies can be varied between 0.025 and ~1000 eV
- Typical deposition rates -~1/100th of a monolayer per laser pulse

KrF laser

- 248 nm
- 25 ns
- up to 50 Hz

2 UHV chambers

Process control by ellipsometry and plasma spectrometry

PLD processes in this work

- Sensor structures: lab-grown CVD graphene, transferred onto Si/SiO₂ substrates pre-patterned with Ti/Au electrodes
- Functionalization by PLD process using different deposition targets (ZrO₂ and Ag) ablated by KrF excimer laser.
- The process was carried out in oxygen or nitrogen gas at 5x10⁻² mbar.
- A series of depositions was made with the number of laser pulses 20...2850

Choice of materials

Nanostructured ZrO₂

final layer thickness 14 nm; ~50% pores

Nanostructured Ag

Ag "average" thickness 1nm; particle diameters ~10 nm

Graphene/ZrO₂

NO₂ in air at RT

Effect is especially large at low concentrations

Graphene/Ag

NO₂ in air at RT

- Partial recovery w/o light
- Light enhancement is essential at low concentrations

Why increased sensitivity?

Characterisation:

- SEM
- XPS
- XRF
- Spectrometric ellipsometry
- Conductivity
- Raman spectroscopy

Conductivity

Defect-related lines D and D' emerge and grow with the number of laser pulses N

Why increased sensitivity?

- Large relative response cannot be explained just by decreased conductivity, new adsorption centres should have been formed.
- Ag has much stronger interaction with graphene than ZrO₂. At the same time, it weakens the interaction with NO₂.

• What about other gases?

UV activation of sensitivity to NH₃

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Summary

- PLD can be used to functionalize graphene -> increased AND diversified gas sensitivity
- Mild UV light (365 nm, <1 mW) can activate and enhance gas sensitivity
- Significantly increased sensitivity demonstrated at low NO₂ concentrations, below 100 ppb!

Collaborators and support

Group of Sensor Technologies

- Dr. Tea Avarmaa
- Dr. Margus Kodu
- Artjom Berholts (PhD student)

Lab of Thin Film Technology

- Dr. Harry Alles
- Dr. Ahti Niilisk
- Tauno Kahro (PhD student)

Grant support is acknowledged from Estonian Research Council (IUT34-27, IUT2-24) and Graphene Flagship.

