European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - EuNetAir COST Action TD1105

WGs and MC Meeting at LINKOPING, 3 - 5 June 2015

Action Start date: 01/07/2012 - Action End date: 30/06/2016

Year 3: 1 July 2014 - 30 June 2015 (*Ongoing Action*)

VOC SENSING PROPERTIES OF HYBRID NANOSTRUCTURES

Zafer Ziya ÖZTÜRK

Function in Action: MC Member, WG Member

Kocaeli / Turkey

Main Research Area

Sensitive Materials

- * Metal oxide nanowire, nanotube and nanorod fabrication
- * Metal nanowire fabrication
- * Preparation of metal oxide and organic (phthalocyanines, porphyrins and oximes) thin films

Transducers

- * IDT, MIS, MS
- * QCM
- * SAW
- Sensor array, Pattern recognition
- Development of chemical and biochemical sensors

H₂ response of nanoporous Pd thin film

H₂ response of TiO2 nanotubes

Purpose

• Fabrication of functional heterostructures.

- Promoting of sensing properties of metal oxides
 - Decreasing working temperature.
 - Increasing sensitivity.

Properties of TiO₂ and Polystyrene Polymer

O TiO₂

O Application area

- nano/microelectronics
- sensors, transducers
- optoelectronic
- Industry

O Polystyrene Polymer

- photovoltaic cells
- electroluminescent devices
- optical limiting
- photoinduced electron transfer

Estimated Band Diagram

Fabrication Processes of Heterostructure Gas Sensor

Cleaning of FTO substrate

Hydrothermally Fabrication of TiO₂ nanorods on FTO

Polymer Coating on TiO₂ nanorods by spin coating

Sensor Device Fabrication of Heterostructures

Gas Test Measurements

Acetone (10 min.) Isopropanol (10 min.) Methanol (10 min.)

Polymer in chloroform 2000 rpm 60 sec.

Au contacts 150 nm I-V

I-t

Working Temperature

Different Gas Concentration

Fabrication of TiO₂ nanorods

 TiO₂ nanorods were hydrothermally fabricated onto fluorine-doped tin oxide (FTO) substrate. 1 ml Titanium (IV) n – butoxide was used as a Ti precursor and mixed by HCI: deionized water with equal volume. The hydrothermal reaction was performed in teflon lined stainless steel autoclave at 150 °C for 18 h. Fig. a shows schematic illustration about teflon and stainless steel autoclave which used for growth nanorods on FTO by hydrothermal method. SEM image of TiO2 nanorods is given by Fig. b.

P(S-co-CMS-C₆₀) (P3) Synthesis

• P(S-co-CMS-C₆₀) (P3) was prepared as follows: A mixture of P(S-co-CMS-N3) (P2), C₆₀ and chlorobenzene was placed in a round bottom flask and degassed by bubbling argon for 10 min. The homogeneous reaction mixture was stirred at 60 °C under argon for 2d. The solution was heated 130 °C and allowed to continue overnight again. The resulting mixture was evaporated to dryness and then THF was added the residue. The mixture was stirred at room temperature. Unreacted C_{60} and other insoluble matters were filtered off. The clean filtrate was evaporated and dried in vacuum desiccator to obtain brown product. Then synthesized polystyrene polymer was coated on TiO₂ nanorods by spin coating method.

Structural Analysis of Hybrid Nanostructres

TiO₂ nanorods

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Polymer/TiO₂ nanorods

Sensor Device and Gas Test System

I-V characteristics of Polymer, TiO2 nanorods and heterostructure

H₂ Sensing Properties of Polymer, TiO2 nanorods and heterostructure

VOC Sensing Properties of Heterostructures

Conclusions

- Polymer thin film/TiO₂ nanorods heterostructures were fabricated for gas sensor application.
- Heterostructure device is more sensitive for isopropanol than TiO₂ nanorods device.
- Heterostructure device is more sensitive for H₂ than TiO₂ nanorods device and Polymer thin film.
- Working temperature is decreased to 100 °C. Even at room temperature, H₂ gas sensing of heterostructure device is obtained.

Acknowledgement

 This study was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) with project number of 113F403.

Thank you for your attention!

