European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir*

COST Action TD1105

WGs and MC Meeting at LINKOPING, 3 - 5 June 2015

Action Start date: 01/07/2012 - Action End date: 30/06/2016

Year 3: 1 July 2014 - 30 June 2015 (Ongoing Action)

Theory of QCM and SAW devices in sensors and biosensors applications

Voinova Marina

Function in the Action (WG Member, Substitute member of MCM) Chalmers University of Technology / Sweden

Scientific context and objectives in the Action

- Background / Problem statement:
- Modeling of dynamics of thin viscoelastic films on the surface of acoustic resonators (BAW, SAW)
- **Brief reminder of MoU objectives:** WG2 (Sensors, Devices and Systems for AQC)

 Objective: general theory and physico-mathematical analysis of acoustic waves propagation in layered systems in sensors and biosensors applications

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Modeling the dynamics of viscoelastic films on QCM-based sensors and biosensors

Surface modification of QCM sensors

$$\Delta f = f - f_0 = -\left(\frac{2f_0^2}{\rho_q V}\right) \Delta M = -C \cdot \Delta M$$

$$\Delta f = f - f_0 = -(\frac{2f_0^2}{\rho_q V})\Delta M = -C \cdot \Delta M$$

Background:

Viscoelastic corrections of Sauerbrey's relation Theory of QCM in biosensors' applications

Kanazawa, K., Frank, C.W., and Hardesty, J.: Resonances of soft films under liquids on the QCM, ECS Transactions, 16, 419-429, 2008

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

QCM: The 'missing mass' effect

Viscoelastic corrections to the measured mass M of the soft layer under Newtonian liquid:

$$M_{s} = M \left\{ 1 - \frac{\eta_{L} \rho_{L} \omega}{\rho} \frac{G^{\prime \prime}}{G^{\prime 2} + G^{\prime \prime 2}} \right\}$$

Soft layer under Newtonian bulk liquid: the total shift in the resonance frequency is a sum of the frequency shift due to the surface mass $M = \rho \cdot h$, contribution of bulk liquid Δf_L and corrections due to the layer viscoelasticity G*=G'+iG''

$$\Delta f - \Delta f_{\scriptscriptstyle L} \approx -\frac{h\rho\omega}{2\pi\rho_{\scriptscriptstyle q}h_{\scriptscriptstyle q}} \left\{ 1 - 2(\frac{\eta_{\scriptscriptstyle L}}{\delta_{\scriptscriptstyle L}})^2 \frac{J^{\prime\prime}}{\rho} \right\} \qquad \qquad J^{\prime\prime} = \frac{G^{\prime\prime}}{G^{\prime\,2} + G^{\prime\,\prime\,2}}$$

The change in the dissipation factor:

$$\Delta D - \Delta D_{L} \approx \frac{h\rho\omega}{f\rho_{q}h_{q}} \left\{ 2(\frac{\eta_{L}}{\delta_{L}})^{2} \frac{J'}{\rho} \right\} \qquad J' = \frac{G'}{G'^{2} + G''^{2}}$$

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

In the air

Modeling SAW:
K² =
$$\frac{g^{*2}\zeta_1^2}{g_0^2} \left\{ \frac{(g^*\zeta_1 - G^*\zeta_2) - e^{2\zeta_1 h}(g^*\zeta_1 + G^*\zeta_2)}{(g^*\zeta_1 - G^*\zeta_2) + e^{2\zeta_1 h}(g^*\zeta_1 + G^*\zeta_2)} \right\}^2$$

SH-SSW resonators

• In vapors or liquid phase : a 'missing mass' effect predicted

$$\Delta V / V_0 \approx \frac{\omega^{3/2} \rho_1 h_1 V_0^2}{2g_0^2} \sqrt{2\eta_2 \rho_2} \left\{ 1 - \frac{\eta_2 \omega(g' + g'')}{g'^2 + g''^2} \frac{\rho_2}{\rho_1} \right\}$$

$$(Voinova, JSSS, 2015)$$

7

<u>Current research activities</u>: modelling and numerical simulations of SH-SSW sensors response in AQC's and biosensors applications

A.Vikström (CTU, 2015)

<u>Current research activities</u>: modelling and numerical simulations of graphene-based nanoresonator

 <u>Axel M. Eriksson</u>,* Marina V. Voinova, and Leonid Y. Gorelik (J.Appl.Phys. 2015)

Suggested R&I Needs for future research

• Research directions as R&I NEEDS:

1. Theoretical modelling and numerical simulations of dynamics of adsorbed films in SAW and QCM resonators.

Software based on the theoretical calculations can be used for the quantitative analysis of the acoustic experiments in AQC and biosensors' applications.

2. Theoretical modeling of a graphene-based sensor

