European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir*

COST Action TD1105

WGs and MC Meeting at ISTANBUL, 3-5 December 2014

Action Start date: 01/07/2012 - Action End date: 30/06/2016

Year 3: 1 July 2014 - 30 June 2015 (Ongoing Action)

Research and Innovation Needs of SIG3

Eduard Llobet

Sub-WG 1.2 leader, Vice-Chair, MC member Universitat Rovira i Virgili Tarragona Spain

SIG3: Guidelines for Best Coupling Air Pollutants and Transducer

CONCLUSIONS From Cambridge meeting in dec. 2013

Suggested R&I Needs for future research to Action WGs/SIGs General Assembly

- Research directions as WGs R&I NEEDS for Action TD1105:
- Coupling air pollutants to transducers generally overlooked
- Detecting pollutants at required levels (e,g, ppb for toxic gases, detection of nanosized PM)
- Sensing materials based inks for fully printed sensors
- Appropriate testing of sensors under realistic conditions to speed up development time.

Scientific approach for sensor development

Thermal evaporation

Phthalocyanines: effect of peripheral groups

Same results with ttb-ZnPc

Strong influence of peripheral groups on gas/material interactions

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Institute of Materials Research, German Aerospace Center, 51147 Cologne/Germany

Applied Sensor Electrode Configurations

- Pt-InterDigital sensor Electrode (IDE)

- Pt Top Bottom Electrode (TBE)

// Pt sputtered Electrode (PE)

Institute of Materials Research, German Aerospace Center, 51147 Cologne/Germany NO₂-response of TiO₂:Cr-layer sputtered on IDE

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Institute of Materials Research, German Aerospace Center, 51147 Cologne/Germany

NO₂-response of TiO₂: 2.2 at.% Cr-layer sputtered between Top-Bottom Electrode (TBE)

- NO₂-response of TiO₂ with 2.2 at.% Cr (TiO₂:Cr) sputtered between TBE yields good sensor response with <u>high sensitivity</u> at temperatures <u>as low as 200°C</u>
- The sensitivity for 50 ppm NO₂ is a factor of 5X10² higher than that achieved with same sensor material on IDE
- The baseline-resistance decreases on exposure to NO₂-concentrations above 200 ppm.
- The investigation to understand the cause of this and similar phenomena is under way.

VOC SENSING PROPERTIES OF HYBRID NANOSTRUCTURES

• VOC SENSING PROPERTIES OF HYBRID NANOSTRUCTURES ZZOZTURK

TiO₂ nanorods

Polymer/TiO₂ nanorods

VOC Sensing Properties of Heterostructures

Chloroform

H₂ Sensing Properties Heterostructure

Universitat Rovira i Virgili, Tarragona, Spain

Detection results

Universitat Rovira i Virgili, Tarragona, Spain

Designed Nanoparticles by Pulsed Plasma Hollow Cathode Sputtering

It is expected that decoration with different metals or metal-oxide nanostructures will allow careful targeting of selectivity to specific molecules

Epitaxial Graphene sensor platform

Applied Sensor Science, Linköping University / Sweden

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY