European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir*

COST Action TD1105

Final Meeting at PRAGUE (CZ), 5-7 October 2016 New Sensing Technologies for Air Quality Monitoring Action Start date: 01/07/2012 - Action End date: 15/11/2016 - EXTENSION: 15/11/2016

Emerging Sensing Materials for Air Quality Monitoring

by the EU Framework Programme

Marcel BOUVET

Sub-WG 1.3 leader, MC member Univ. Bourgogne Franche-Comté Dijon / France

Plan

- Scientific context and objectives in the Action
- Research facilities available in ICMUB
- Current research activities in ICMUB
- Molecular materials:
 - Cavitands: Selective or not?
 - Solution processing: The example of phthalocyanines
- Polymers:
 - Dielectric materials
 - Conducting polymers
- Suggested R&I Needs for future research

Scientific context and objectives in the Action

Sub-WG 1.3: Emerging sensor materials for air-pollution detection molecular materials, organic/inorganic, hybrid, nanocomposites, polymers ...

- Background / Problem statement:
 - Interest: The tuning of properties by molecular engineering

morphology, roughness and specific surface, hydrophilicity or hydrophobicity, processability, electrical properties

- One way: to combine materials for improving chemosensing

AFM images (1 mm x 1 mm) of a pure HOGaPc film (left) and a hybrid film cellulose/HOGaPc film;

Langmuir 23 (2007) 3712-3722

• Brief reminder of MoU objectives:

selectivity, low-cost: solution processing (e.g. printing techniques ...),

low-power consumption (can operate at room temperature)

Research Facilities available in ICMUB

- Research Facilities:
- Synthesis
- Solution processing and secondary vacuum chamber
- Electrical and electrochemical measurement set-ups
- Workbenches: O₃ (generator/analyser, ppb range), NH₃ (ppm range),
 synthetic air

BTX (ppm range), humidity

Chemistry Electrochemistry Electronics

Current research activities in ICMUB

- Current research topics at the ICMUB:
 - New materials K

J. Mater. Chem. 2012

- New transducers

- **MSDI** Org. Electron., 26, 2015
- Brief list of ongoing research topics of the ICMUB:
 - Humidity-insensitive ammonia sensors
 - Molecular Semiconductor- Doped Insulator (MSDI) heterojunctions as new conductometric transducers
 - New polymer/macrocycle hybrid materials
 - Electrochemical modification of electrodes

Molecular materials

Weak intermolecular interactions play a key role:

-From molecules to materials (structure and morphologies depend on these interactions)

-Between sensing materials and target gaseous species

They are Van der Waals, $\pi - \pi$, dipole-dipole, H-bonds, ...

Struture and morphology are highly related to the processing techniques

Adsorption and desorption can occur at RT.

Molecular engineering

Cavitands

Cavitands

Covalently attached **quinoxaline-bridged resorcin[4]-arene** cavitands to gold nanoparticles anchored on oxygen plasma treated carbon nanotubes

Solution Processing versus Vacuum

STM image of LuPc₂ on vicinal Si Different molecular orientations and adsorption geometries are pointed out

Vacuum Evaporation

Submonolayer Interaction with the substrate

> Thick film Intermolecular interactions

STM evaporated LuPc₂ film, thickness = 1400 Å

A sketch of the proposed adsorption geometry of type I molecule

Solution Processing

LuPc₂ / PMMA (80/20 w/w) (polymethylmetacrylate): by solvent-cast or spin-coating

N. Witkowski et al., Experimental and theoretical study of electronic structure of lutetium bi-phthalocyanine, J. Chem. Phys., 138, 234701, 2013; V. Parra et al., Electrical transduction in phthalocyanine-based gas sensors: from classical resistors to new functional structures, J. Porphyrins and Phthalocyanines, 13(1), 84-86, 2009.

Y. Chen, M. Bouvet*, T. Sizun, Y. Gao, C. Plassard, E. Lesniewska, J. Jiang, ozone (ppb) Facile approaches to built ordered amphiphilic tris(phthalocyaninato) europium Triple-decker complex thin films and their comparative performances in ozone sensing, Phys. Chem. Chem. Phys., 12, 12851-12861, 2010. (Hot paper)

Dielectric polymers

Associated to capacitive or acoustic transducers, their response = f(dielectric constant)

- **Polyimide (PI)**, cellulose acetate, polycellulose acetate butyrate, polymethylmethacrylate and polyvinylpyrrolidone, polyethylene-naphthalate (PEN)

Specific effects:

- swelling

temperature induces an increase of the motion of polymer chains segments,

above T_a (or for low T_a polymers) diffusion of gases is higher

The interaction of polymers with VOCs can be described using linear solvation energy **relationship** (LSER) that takes into account dispersion, polarizability, dipolarity, basicity, acidity and hydrogen bonding interactions.

U. Altenberend, A. Oprea, N. Barsan, U. Weimar, Contribution of polymeric swelling to the overall response of capacitive gas sensors, Anal. Bioanal. Chem., 2013, 405, 6445–6452; J.W. Grate, Hydrogen-Bond Acidic Polymers for Chemical Vapor Sensing, Chem. Rev. 108 (2008) 726-745

Conducting polymers

Partially oxidized = conductive form

Generally associated with conductometric transducers;
Sensitive to redox active species, e.g. NO_x and NH₃

R.A. Potyrailo, C. Surman, N. Nagrajand and A. Burns, Materials and Transducers Toward Selective Wireless Gas Sensing, *Chem. Rev.*, 2011, 111, 7315–7354; D. T. McQuade, A. E. Pullen, T. M. Swager, Conjugated Polymer-Based Chemical Sensors, *Chem. Rev.*, 2000, 100, 2537–2574

Other conducting polymers

Poly(p-phenylene vinylene)

PEDOT

Polythiophene

Layer by Layer Deposition of Conducting Polymers – **Phthalocyanine Hybrid Materials** Cationic and anionic **polyelectrolytes** NaO₃S SO₃Na $\mathbf{+}$ NaO₂S **Rinsing solution Rinsing solution PANI** solution CuTsPc solution SO₃Na n° 1 n° 2 **TsCuPc** 1BL H X-X Substrate PANI

P. Gaudillat, F. Jurin, B. Lakard, C. Buron*, J.-M. Suisse, M. Bouvet*, "Water-stable Polyaniline-Phthalocyanine hybrid material for ammonia sensing in high humidity atmosphere", Sensors, 14(8), 13476-13495, 2014.

Electrodeposited Polypyrrole-phthalocyanine hybrid materials

T. Sizun, T. Patois, M. Bouvet*, B. Lakard*, "Microstructured electrodeposited polypyrrole-phthalocyanine hybrid material, from morphology to ammonia sensing", J. Mater. Chem., 22, 25246-25253, **2012**

PPy-sCoPc Hybrid materials

PPy-LiClO₄

PPy-sCoPc

Optical topomicroscopy

Scanning electron microscopy

T. Sizun, T. Patois, M. Bouvet*, B. Lakard*, "Microstructured electrodeposited polypyrrole-phthalocyanine hybrid material, ______from morphology to ammonia sensing", J. Mater. Chem., 22, 25246-25253, **2012**

Ammonia effect on PPy-sCoPc

Higher sensitivity to NH_3 of the hybrid material, with a weak effect of rh in the 20-80% rh range

T. Sizun, T. Patois, M. Bouvet*, B. Lakard*, "Microstructured electrodeposited polypyrrole-phthalocyanine hybrid material, from morphology to ammonia sensing", J. Mater. Chem., 22, 25246-25253, **2012**

Suggested R&I Needs for future research

• Research directions as R&I NEEDS:

 to focus on the structure and morphology of sensing materials for a higher stability of the response of sensors
 (they depend on the processing techniques)

to study the compatibility with humidity (a key issue in AQM)
 The effect of rh on the response of sensors must be studied,
 not only at one particular value, but also in a broad rh range
 At RT, 100% rh ≈ 22 000 ppm,

but 100% rh at 20°C correspond to 73% rh at 25°C.

Acknowlegments

ICMUB, EMMD, Univ. Bourgogne Franche-Comté, Dijon

Dr Thibaut Sizun and Dr Pierre Gaudillat, Amélie Wannebroucq, Mickael Mateos, Ph. D students, Dr Abhishek Kumar (Master 3, Delhi University, India) Dr Rita Meunier-Prest, Dr Jean-Moïse Suisse

France

Prof. Boris Lakard, Dr Cédric Buron and Florian Julin, PhD student, Univ. Bourgogne de Franche-Comté (Besançon),

Abroad

Dr Vicente Parra, Post-doctorant, DC Wafers then PV Silicon Advisor (Spain) Prof. Yanli Chen, China University of Petroleum (Qingdao, China) Dr Inta Muzikante[†], Institute of Solid State Physics (Riga, Latvia) Prof. Naoki Sato, and Dr Richard Murdey, Kyoto University (Japan)

Financial supports:

- The Agence Nationale de la Recherche (ANR) CAP-BTX 2010 and OUTSMART 2015
- -The Conseil Régional de Bourgogne
- -The Heiwa Nakajima Foundation (Japan)

COST Action TD1105

MINISTÈRE DE L'ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE

