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GasFETs

Micro-calorimeters

Gas preconcentrators

Micro-spectrometers

Metal-oxides

Advanced gas sensing technologies
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Green manufacturing

Disposability: plastic, paper, biodegradable materials

foldable

source: Swedish ICT

flexible

source: Plasticlogic
conformal

source: SEMICONWEST 2012

large area

source: 

Princeton 

University

lower costs

source: GSA
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Green manufacturing

• Large area manufacturing on foil (S2S, R2R)

• Additive processes, i.e. printing

• Environmentally friendly materials
• Water based inks

• Recyclable substrate (PET, Paper, PLA…)

Localised patterning of materials outside cleanroom

EPFL-EnviroMEMS
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Smart sensing systems on foil

■ Foil-based sensors

a)

5 mm Printed and 

encapsulated
chemical / physical

■ Integration of 

components on foil

SMD and bare

dies on PET

Foil to foil 

integration

Biodegradable
paper / PLA

MEMS bridges
hybrid and fully printed
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Outline

• Polymeric analytical instruments

• Printed sensors

• Biodegradable sensors technology

• Conclusion
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Analytical instruments

• Architecture of our foil micro-analyzer

Preconcentrator 1

Preconcentrator 2

Preconcentrator 3

GC column SensorSensorGC column

Preconcentrator 1

Preconcentrator 2

Preconcentrator 3

6



7

• Rolling up of printed micro-hotplates

 

Tubular gas preconcentrator

Schematic view of the rolling up and filling of a printed Gold micro-hotplate

Picture of  a rolled micro-hotplate 

with electric wires

■ Materials

 Ceramic glue: sealing the rolled up micro-hotplate

 Adsorbent: carbopack B and Tenax polymer

 Glass fibers: plugging inlet and outlet of rolled device

 Conductive adhesive: Connection with electric wires

FGP can welcome arious adsorbents              

i.e. targeting different gases. 

15 x 8 mm2

M. Camara et al., Sensors and Actuators B, 2016
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■ Materials

 Teflon tubes: fluidic capillaries of 2mm of internal 

diameter

 Ceramic glue: high temperature operating device

• Fluidic interconnects

Picture of FGP in its final stage with adsorbent, 

fluidic capillary and electric wires

Schematic view of FGP in its final stage with adsorbent and fluidic capillary 

Inlet and outlet are adjustable during the 

rolling up for reaching high flow rates

Tubular gas preconcentrator

M. Camara et al., Sensors and Actuators B, 2016
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Flow Vs Pressure for a FGP filled with 1 mg of carbopack B compared with and two empty 

silicon GPs and metallic capillary, respectively.

• Fluidic characterisation
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The pressure drop observed with our FGP is mainly due to the

metallic capillary used to connect the FGP to the test bench.

Tubular gas preconcentrator

M. Camara et al., Sensors and Actuators B, 2016
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• Preconcentration under benzene

Six desorption peaks from a FGP filled with 1mg of

Carbopack B when exposed to 250 ppb of benzene (60, 10

and 5s) and desorbed with flow rates (Df) of 83 and 66

mL/min, respectively

- A PF of 56 is obtained for only 1 min of adsorption (for Silicon : 10 min)

- An adsorption time down 10s is also conceivable for lowering the duty cycle.
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M. Camara et al., Sensors and Actuators B, 2016



■ Inkjet-printed gas multisensing platforms on foil: fabrication
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Multisensing platform: H2O, T°C, gases 

A. Vasquez-Quintero et al., FPE, 2016



– Printed Ag + electroplated Ni heaters

– Laminated 14 μm dry foil resist as 

interdielectric

– Printed Ag + electroplated gold electrodes

• Heater resistance: 36 ± 3 Ω

• Sensing area: 1 x 1 mm2

Sensing layer: 

• Polyaniline doped with poly                         

(4-styrenesulfonic acid)

• Vapor-phase deposition polymerization
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Schematic view of µ-hotplates.

Optical top view of µ-hotplates.

Printed micro-hotplates

• Design and fabrication

E. Danesh et Anal. Chemisty, 2015



Chemoresistive NH3 sensor
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Value: 97 ± 7 Ω 86°C at 30 mW

1.9 mW/°C
Hotplate

E. Danesh, Analytical Chemistry, 2015

E. Danesh et Anal. Chemisty, 2015



Printing metal-oxide sensors on foil
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For higher temperature of operation:

- More stable metal: Gold

- Temperature resistant foil: Polyimide

Challenges       
Polymeric foil have low Tg

Printing resolution

- Printing of hotplate transducers

- Printing of metal-oxide films



Fully printed SnO2 sensor

• Gold printed transducer on Upilex (PI) foil

15

Responses to CO and NO2

M. Rieu, Sensors and Actuators B, 2015
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■ Foil PI (PEN) 50 µm thick• Stack of printed layers

‒ Inkjet SnO2 and WO3 NPs 

Heater IDEs

Fully printed SnO2 sensor



Biodegrable sensors

• On biodegradable substrates low Tg (56°C) poly lactic acid (PLA)                    

 detection of humidity and temperature
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G. Mattana et al., Org. Electronics (2015)

• Printing of Ag and Au inks

• Photonic sintering

Encapsutation

by lamination
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Biodegrable sensors

• Printed organic TFTs on poly lactic acid substrate

Transistors

- Thin film & electrochemical

- PLA as substrate & gate

dielectric

Collaboration with Prof. K. Persaud, UMAN, UK

O.S.C.

Flexible Substrate
Flexible Substrate

S D

Gate Dielectric

Sensing Layer

18G. Mattana et al., Org. Electronics (2015)



Biodegrable sensors

• Gate functionalisation with odorant binding proteins

wasp OBPs (β-barrel shape)

in PVA as sensing layer

Ids – Vgs curves acquired before and after exposure to saturated vapours of the analyte

(ambient conditions).
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Biodegrable sensors

• Inkjet printing on paper substrate

 

200 µm 

500 nm 

J. Courbat et al., Transducers 2011 / G. Mattana et al., 

E-MRS 2012 / D. Briand et al., LOPEC 2012

 Uncoated cap. Coated cap. 

Temp. sensor 

1 cm 
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Biodegrable sensors

• Rochelle salt / paper composite piezoelectric material

: 5 mm

: 500 m

b)

: 500 m

: 10 mm

a)

Solution processed

- Biocompatible

- Biodegradable

1 cm

Potassium 

sodium

tartrate 

Food additive E337

- Massive production

- Low cost

- Water soluble

- Environnemental/Bio    

compatibility 

Piezoelectric constant 30-290 pC.N-1

21E. Lemaire et al., Sensors and Actuators A, 2016



Conclusions

• Polymeric and printed sensing components for 

environmental monitoring were presented

Benefits:

• Potentially low-cost

• Flexible

• Towards green tech i.e. manufacturing + end of life

Suitable for disposable sensors

- Smart cards

- Reusable smart labels

- Single use / distributed preconcentrators

- Towards micro-analytical instruments
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Photonic flash sintering

Photonic flash sintering (Xenon lamp)

- 200 – 1500 nm

- Flash duration controlled by pulses (µsec)

- Energy: 3000-5000 mJ/cm2

- Absorption of metal much higher than 

substrate: Substrate remains at low T°C 0 500 1000 1500 2000 2500
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Photonic flash sintering
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• Photonic sintering (1 to 5 J/cm2)

Adv. Manufacturing | Microcity

April 19th 2016 | Danick Briand

■ On transparent polymeric substrates


