European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir*

COST Action TD1105

Final Meeting at PRAGUE (CZ), 5-7 October 2016 New Sensing Technologies for Air Quality Monitoring Action Start date: 01/07/2012 - Action End date: 15/11/2016 - EXTENSION: 15/11/2016

Dosimeter-Type Sensor for sub-ppm NO_x Detection D. Schönauer-Kamin, I. Marr, R. Moos

Daniela Schönauer-Kamin WG2 Member, MC substitute

Funktionsmaterialien University of Bayreuth, Germany

Scientific context and objectives in the Action

Background / Problem statement:

Development of novel gas sensing principles and new gas sensing materials for air quality monitoring (sub-ppm range) and automotive applications (ppm range)

- Brief reminder of MoU objectives:
 - Preparation of gas sensors in multi-layer technology and thick-film technology on alumina substrates and flexible substrates like steel
 - Characterization of gas sensing devices in synthetic exhaust gas test benches / engine test bench, e.g. NO_x, O₂, HC, NH₃

Research Facilities available for the Partner

preparation and development of novel functional materials

Film technologies

thich and thin film technology/ Aerosol-Deposition-Method

- Ceramic Multilayer Technology
- Laser patterning

substrates, tapes, functional films

Modelling and Simulation

with COMSOL-Multiphysics

Research Facilities available for the Partner

Material Characterization

REM / EDX

Electrical Material Characterization

impedance spectroscopy, high frequency technology

Electrochemical Methods

Potentiostat

Gas Test Benches and Analytics

sensor or catalyst with synthetic gas test benches Gas analysis (FTIRs, CLD, NDIR, FID ...)

Engine Dynamometer

real exhaust gas

Dosimeter-type sensor Working Principle of a Gas Dosimeter analyte molecules Sorption adsorbent capacity exhausted analyte molecules adsorbent sorption **Regeneration of sorption** release sites and sensor signal: release of the analyte SR adsorbent analyte molecules Analyte accumulation in the sensitive layer: (sorption >> desorption) \rightarrow change of the analyte molecules physical properties adsorbent sensing period: selective **Relevance of** analyte sorption determining proportional to the adsorbent analyte concentration amount/dose and mean concentration

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

I. Marr et al., Journal of Sensors and Sensor Systems 3, 29-46 (2014)

What are the differences between Gas Sensor and Gas Dosimeter

- detection of a concentration
- sensor signal is caused by formation of a chemical equilibrium (reversible)
- determination of an analyte <u>amount</u> by <u>integration</u> of the sensor signal
- *fast response/relaxation times* required for reliable determination of concentrations and mean values
- uncertainties at low analyte levels due to
 - zero drift
 - slow equilibrium
 - non-linear measurement range

- detection of an *amount/dose*
- signal change due to irreversible sorption
- chemical storage enables detection of lowest doses
- real-time evaluation the sensor signal \rightarrow fast
- Determination of the current *concentration* via *timedependent derivative* of the sensor signal
- Re-definition of zero level after regeneration avoids longterm drift
- measurement range and sensitivity adjustable by temperature and layer thickness

What are Essential Material Properties?

- Selective sorption under sorption conditions
- Strong bonds between analyte molecules and sorbent

 \rightarrow no desorption in the absence of the analyte

- Measurable physical property being proportional to the analyte loading level
 → linearity of the characteristic line (sorption rate ∞ analyte concentration)
- Sorption rate has to be *independent* of the loading level
- Actively initiated regeneration of sensor signal and material
 - \rightarrow thermally initiated analyte release in defined periods

NO_x storage material

 $Mn/K/La-Al_2O_3$

Mn: oxidation of NO to NO₂

- K: storage of NO₂ as nitrate or nitrite
 - *nitrate* route: NO_2 and adsorbed oxygen O^{2-} form nitrate NO_3^{-}
 - *nitrite* route: NO_2 stored directly as nitrite NO_2^- and in the next step oxidation to nitrate NO_3^-

$$K_2O + 4NO_2(g) + O_2 \leftrightarrow 4KNO_3$$

 $NO + \frac{1}{2}O_2 \leftrightarrow NO_2$

La-Al₂O₃: catalyst support – high specific surface area

NO_x Dosimetry with NO_x storage material

NO_x dosimetry at 380°C in lean gas:

- Sensor signal $|\Delta R|/R_0$ increases in NO and NO₂
- Irreversibility: strong bonding of NO_x to the storage sites
- Comparable sensitivity to NO and NO₂ due to oxidizing components
- Linear characteristic line up to $|\Delta R|/R_0 \approx 40$ %
- Regenerable by heating to 650 °C in air

9

Dual Mode Functionality

NO dosimetry at varying NO concentrations (380°C):

- Sensor signal |Δ*R*|/*R*₀ increases irreversibly in 5 or 10 ppm NO
- Signal slope increases with c_{NO} $\rightarrow |\Delta R|/R_0 \sim A_{\text{NO}}$
- Time derivative of the resistance $\rightarrow |dR/dt| \sim c_{NO}$

Is Air Quality Monitoring Possible?

EU Directive 2008/50/EC on ambient air quality:

- hourly mean value of $200 \mu g/m^3 NO_2 \triangleq 0.1 \text{ ppm } NO_2$
 - peak concentrations may be higher

 \rightarrow

Presented NO_x dosimeter is suitable for Air Quality Monitoring

Sub-ppm NO_x detection

NO_x dosimetry at 350°C in 20% O₂, 2% H₂O, N₂:

- detection of 20 ppb NO_x is possible (each step 20 min): total NO_x amount: around 84000 ppb·s
- slope of |**Z**| depends on NO_x concentration
- |Z| stays constant during NO_x pauses: no desorption
- sensor response $|\Delta Z|/Z_0$ linear with amount of NO_x
- Max. loading of these sensor (@ $|\Delta Z|/Z_0 = 40\%$): around 500 s with 750 ppb NO_x ($A_{NOx} = 375000$ ppb·s)

Dosimeter-type sensor is suitable for reliable NO_x detection

Presented NO_x dosimeter is suitable for Air Quality Monitoring

- -> formation of nitrates on K sites is determined by DRIFTS and the nitrate formation is detected electrically
- -> typical dosimeter-like behavior only with Mn/K/La-Al₂O₃

Conclusion

- NO_x dosimetry is suitable for sub-ppm detection
- Amount and concentration of NO_x can be measured by dual mode functionality
- Detection limits can be optimized by thickness of functional layer
- Comparison with established sensing devices (chemical & electrochemical sensors) showed promising results [R. Moos, I. Marr, Proceedings IMCS2016]

Thank you for your kind attention!

