

UNIVERSITAT DE BARCELONA

TITLE	Low-Power Heating for Conductometric Gas Nano Sensors:
	Self-Heating Effects and Others

SPEAKER	O. Monereo, N. Markiewicz, J. Samà, O. Casals A. Cirera, A. Romano-Rodríguez, A. Waag, J.D	s, C. Fàbrega, F. Hernandez-Ramírez, . Prades
INSTITUTION	MIND/IN ² UB, Dept. d'Enginyeria: Electrònic IHT/EC ² /LENA, Braunschweig University of	a, Universitat de Barcelona, Spain Technology, Germany
EVENT	EuNetAir COST Action TD1105 Final Meeting October 7 th , Prague (CZ)	BetterSense Nanodevice Engineering for a Better Chemical Gas Sensing Technology an ERC Starting Grant Project

Power Consumption

State of the art

J.Daniel Prades dprades@el.ub.edu

Heated Gas Sensors

J.Daniel Prades dprades@el.ub.edu

Intoduction

P 4

J.Daniel Prades dprades@el.ub.edu

Strategy Miniaturization

1) Sensing element

porous layers, bunch of (nano)particles, ...

Revenue du metal

a few nanoparticles

2) Heating element

millimeters scale

 $P \sim 10 \text{ mW}$

microelectronics

Strategy Limits of miniaturization

Appl. Phys. Lett. 93, 123110 (2008)

efficient self-heating

 $P < 10 \mu W$

Intoduction

Self-heating

From random wires to single wire.

P 6

J.Daniel Prades prades@el.ub.edu

Intoduction

Self-heating

From single wire to random wires ???

P 7

J.Daniel Prades dprades@el.ub.edu

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Self-heating in random systems

P 8

J.Daniel Prades dprades@el.ub.edu

Carbon Nano Fibers (CNF)

Carbon Nano Fibers (CNF)

Self-heating in

random systems

9

J.Daniel Prades dprades@el.ub.edu

Self-heating in random wires

Carbon Nano Fibers (CNF)

Sens. Actuators B **187**, 401 (2013)

Self-heating in random CNFs

Power consumption?

Sens. Actuators B 211, 489 (2015)

10⁶ Heater operation 10⁵ x100 10⁴ Power (µW) 10 x10000 Self-heating 10 10¹ External heater Self-heating 10[°] Ī Fit to P = V² / [R_o · (1+ α · Δ T)] **10**⁻¹ 25 50 75 100 125 Temperature (°C) Significant Power Savings "efficient self-heating"

Self-heating in random systems

P 15

J.Daniel Prades dprades@el.ub.edu

Self-heating in random systems

P 16

J.Daniel Prades dprades@el.ub.edu

CIDEL EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Self-heating in random CNFs

Origin of efficient heating?

Nanoscale 8, 5082 (2016)

Heater operation

Dr. Sauerwald Prof. Schütze

Self-heating in random systems

2 18

J.Daniel Prades dprades@el.ub.edu

CIDEL EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Self-heating in random CNFs

Origin of efficient heating?

Nanoscale 8, 5082 (2016)

IR Thermography

Raman Shift Mapping

European Network on New Sensing Techno for Air-Pollution Control and Environmental Sus

Self-heating in random CNFs

Origin of hot-spots?

Nanoscale 8, 5082 (2016)

Self-heating in random systems

P 20

J.Daniel Prades dprades@el.ub.edu

CICIEL EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Self-heating in random CNFs

Resistor network model

R_

Connection node

Nanoscale 8, 5082 (2016)

Hot-spots

Self-heating in random systems

P 21

J.Daniel Prades dprades@el.ub.edu

Self-heating in random CNFs

Resistor network model

Nanoscale 8, 5082 (2016)

High Resistance - spots

Self-heating in random systems

P 22

J.Daniel Prades dprades@el.ub.edu

Self-heating in random CNFs

Resistor network model

Nanoscale 8, 5082 (2016)

Sensing Resistance - spots

Self-heating in random systems

P 23

J.Daniel Prades dprades@el.ub.edu

CCDSL EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Self-heating in random CNFs

Validation

Nanoscale 8, 5082 (2016)

Hot - spots High Resistance - spots Sensing Resistance - spots

Self-heating in random CNFs

Power consumption?

Sens. Actuators B **211**, 489 (2015) Nanoscale **8**, 5082 (2016)

hot-spots

Self-heating in random systems

P 24

J.Daniel Prades dprades@el.ub.edu

efficient self-heating

Pulsed self-heating in random systems

P 25

Resistance (0)

Voltage (V) Temperature

Self-heating Power (mW)

(O°)

J.Daniel Prades dprades@el.ub.edu

Self-heating in random CNFs

Pulsed operation?

Sens. Actuators B 226, 254 (2016)

Pulsed self-heating in random systems

P 26

Resistance (Ω)

Signal ΔR (Ω)

J.Daniel Prades dprades@el.ub.edu

Self-heating in random CNFs

Advantages of pulsing

Sens. Actuators B 226, 254 (2016)

Pulsed-selfheating?

1) Baseline stabiliz.

Self-heating in random systems

P 29

J.Daniel Prades dprades@el.ub.edu

Self-heating in random nanosystems

Is it possible with other materials?

- + Materials:
 - + Carbon nanofibers
 - + Carbon nanotubes
 - + Graphene
 - + ZnO nanowires
 - + TiO₂ nanowires
 - + WO₃ nanowies
 - + SnO₂ nanowires
 - + Ge nanowires
 - + Pt nanowires

+ Methods:

- + In-situ CVD growth
- + In-situ hydrothermal
- + Drop-casting
- + Electrospray
- + Dielectrophoresis
- + Langmuir Blodgett

Self-heating

European Network on New Sensing Technologies for Air-Pollution Control and Environmental Sustainabilit

Self-heating in random MOX

Is it possible with other materials?

Yes, and tricks depend on the material used.

Illuminated Gas Sensors

Light Activated Gas Sensors

Concept

Phys.Chem.Chem.Phys. 11, 10881 (2009) Sens Actuators B 140, 337 (2009)

Intoduction

Light Activated Gas Sensors

Features

Phys.Chem.Chem.Phys. 11, 10881 (2009) Sens Actuators B 140, 337 (2009)

UNIVERSITATDE BARCELONA

Surface Modifications

P 39

10 nm

J.Daniel Prades dprades@el.ub.edu

CIDEL EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Visible light operation

Surface sensitization

EU-Patent Nr. 11179783.3 Nano Energy 2, 514 (2013)

Visible light operation

Surface functionalization

Adv. Funct. Mater. 24, 595 (2014)

Surface Modifications

P 41

J.Daniel Prades dprades@el.ub.edu

Visible light operation

Flexibility

Adv. Funct. Mater. 24, 595 (2014)

800

600

400

200

[NO₂] / ppb

4,000

3,000

2,000

1,000

0

S/%

CCDSE EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

+ Very good selectivity

2000

4,000

% 3,000 % 2,000

1,000

0

0

4000 6000 8000

Time / s

200 300 400 500 600 700 800

[NO₂] / ppb

11111111	Lonconc	

Light operated sensors Practical issues

° 43

J.Daniel Prades dprades@el.ub.edu

- + Poor photon flow control
 - + Distance geometry
 - + Only current-controlled

+ High power consumption

- + Optical loses
- + >>10mW

Illumin. Sensors

Monolithic integration

Light operated sensors

From discret components to monolithic

P 44

J.Daniel Prades dprades@el.ub.edu

CLOSE EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Sensor platform: In:GaN LED + IDE

https://www.tu-braunschweig.de/iht/ec2

J.Daniel Prade dprades@el.ub.ec

Monolithic

integration

CIDEL EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

P 48

J.Daniel Prades dprades@el.ub.edu

Monolithic integration

Results: semi-transparent device

10

1

0,1

ر ⊑_0,01 -

- 1E-3

- 1E-4

1E-5

22

Commercial LED

16

18

20

 $V_{LED} = 2.95V$

 $I_{LED} = 100 \text{ mA}$

 $P_{Th} = 295 \text{ mW}$

Distance < 5mm

Conclusions Heated sensors

P 57

J.Daniel Prades dprades@el.ub.edu

Efficient self-heating in random nanostructures

Hot - spots *High Resistance* - spots *Sensing Resistance* - spots

Universitat» BARCELONA

Air-Pollution Control and Environ

Pulsed - selfheating 1) Baseline stabilization 2) More power savings 3) Faster times

As good at sensing as the material used.

Can be applied to 1D, 2D, carbon, MOXs

Conclusions Illuminated sensors

P 58

J.Daniel Prades dprades@el.ub.edu

Potentially equivalent to heated sensors

Surface modification for ✓ Visible operation ✓ Better Selectivity

Practical issue: light control

Air-Pollution Control and Environm

Monolithic integration of LED+IDE:
✓ Full light control, lots of power savings...
✓ Ready to use!

Thank you

- + I. Samà
- + P. García-Lebière
- O. Monereo +
- + S. Illera
- + N. García-Castelló
- + J. Llosa
- + A. Varea
- E. Xuriguera +
- + R. Jiménez-Díaz
- + A. Romano-Rodríguez
- + A. Cirera
- A. Cornet +

- M.W. Hoffmann
- A.E. Gad
- + J. Hartmann
- + X. Wang
- H. Shen
- A. Waag ╋

T. Sauerwald

- + F. Shao
- + M. Manzanares
- + T. Andreu
- + F. Hernández

+ S. Barth

BetterSense

Nanodevice Engineering for a Better Chemical Gas Sensing Technology

an ERC Starting Grant Project

The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 336917.

