

M. Meyyappan Chief Scientist for Exploration Technology

NASA Ames Research Center <u>m.meyyappan@nasa.gov</u>

What Do We Expect from a Well-Designed Chemical Sensor System?

- First, a single device has no value. We need a system consisting of:
 - Sensor array (Electronic Nose, Pattern recognition...)
 - Pre-concentrator?
 - Sample delivery, Microfan? Jet?
 - Signal processing chip
 - Readout unit (data acquisition, storage)
 - Interface control I/O
 - Integration of the above
- Criteria for Selection/Performance
 - Sensitivity (ppm to ppb as needed)
 - Absolute discrimination
 - Small package (size, mass)
 - Low power consumption
 - Rugged, reliable
 - Preferably, a technology that is adaptable to different platforms
 - Amenable for sensor network or sensor web when needed

Why Nanomaterials/Nanosensors?

- Compared to existing systems, potential exists to improve sensitivity limits, and certainly size and power needs
- Why? Nanomaterials have a large surface area. Example: Single-walled carbon nanotubes (SWCNTs) have a surface area ~1600 m²/gm which translates to the size of a football field for only 4 gm.
- Large surface area is large adsorption rates for gases and vapors is changes some measurable properties of the nanomaterial is basis for sensing
 - Dielectric constant
 - Capacitance
 - Conductance: our choice
 - Deflection of a cantilever

- Early chemical sensors were of the CHEMFET type with SnO_2 and other oxide conducting channels as we have seen before.
- Similar CNT-FETs have been tested in the literature, exposing to NH₃, NO₂, etc.; change in conductivity has been observed (Kong et al., Science, Vol. 287, 2000)
- Limitations of CNT-FET
 - Single SWCNT is hard to transfer or grow *in situ*
 - Even a film of SWCNTs by controlled deposition in the channel is complex
 - 3-terminal device is complex to fabricate
 - Commercial sensor market is very cost sensitive

- Easy production using simple microfabrication, compared to FETs
- 2 Terminal I-V measurement
- Low energy barrier Room temperature sensing
- Low power consumption: 50-100 μW/sensor

Processing Steps

- 1. Interdigited microscale electrode device fabrication on silicon wafer
- 2. Disperse purified nanotubes in DMF (dimethyl formamide)
- 3. Solution casting of CNTs across the electrodes
- 3. After solvent evaporates, a thin film of CNTs bridges the electrodes; strong adhesion.

Jing Li et al., Nano Lett., **3**, 929 (2003)

SWCNT Sensor Testing and Training An Example for NO₂ Detection

Detection limit for NO_2 is 4 ppb.

- Test conditions: Flow rate: 400 ml/min, 23 °C Purge & carrier gas: N₂ or Air
- Measure response to various concentrations, plot normalized conductance change vs. concentration
- Sensor recovery can be speeded up by exposing to heating, UV light or AC bias
- Full recovery to baseline is not critical during operation as we only look for a change in slope triggered by any event.

- Use of a sensor array (32-256 sensors)
- Variations among sensors
 - physical differences
 - coating
 - doping
 - nanowires

Using pattern matching algorithms, the data is converted into a unique response pattern

Operation:

- 1. The relative change of current or resistance is correlated to the concentration of analyte.
- 2. Array device "learns" the response pattern in the *training* mode.
- 3. Unknowns are then classified in the *identification* mode.
- 4. Sensor can be "refreshed" using UV LED, heating or purging

Gases/Vapors Tested

Analyte	Sensitivity/Detection Limit				
CH ₄	1 ppm in air				
Hydrazine	10 ppb tested by KSC				
NO ₂	4.6 ppb in air				
NH ₃	0.5 ppm in air				
SO ₂	25 ppm in air				
HC1	5 ppm in air				
Formaldehyde	10 ppb in air tested by JPL				
Acetone	10 ppm in air				
Benzene	20 ppm in air				
Cl ₂	0.5 ppm in air				
HCN	10 ppm in N ₂				
Malathion	Open bottle in air				
Diazinon	Open bottle in air				
Toluene	1 ppm in air				
Nitrotoluene	256 ppb in N_2				
H ₂ O ₂	3.7 ppm in air				
DMMP	100 ppb in air				

ers

- Pristine, Rh-loaded and PEI-functionalized SWCNT: all give fast response ~18 seconds
- Recovery time $\sim 1 \min$
- Detection limit: 10-20 ppb

Hydrogen Peroxide Trace Detection

polyethyleneimine (PEI)-functionalized SWCNTs

- Headspace test: sensor exposed to open bottles of H_2O_2 , water, and methanol
- Substantial difference in responses
- Adequate to construct e-nose with 32sensor elements

H_2O_2

- Fast sensor response: 6 seconds
- Detection limit: 25 ppm

Mechanisms?

•Electron donation from an oxidizer like H_2O_2 decreases the conductivity of the inherently p-type SWCNTs in air

•PEI-functionalized SWCNTs have been shown to be n-type. Their conductivity increases after exposure to H_2O_2

Gas Sensor Platforms to date

 1 cm^2

5" x 5"

Features:

Response time in seconds

4"

- ppm/ppb detection levels
- Multichannel chip provides high sensitivity/ multifunctions
- Integrated Temperature, Pressure, and Humidity sensing
- Integrated signal processing
- Low power demand (50 mW including all operations)
- Low cost microfabrication

- 12 to 256 sensing elements on a chip (1cm x 1cm) with heater.
- Number of sensing elements can be increased on a chip.
- Number of chips can be increased on a 4" wafer.
- Wafer size can be increased to 6", 8", or 12".
- SWCNT solution-casting by ink jetting or using microarrays

First Nano Product in Space

NASA Ames chemical sensor module was on a secondary payload of a Navy satellite (Midstar-1) launched via Atlas V on March 9, 2007. Sensor data downloaded for 60 down

A 32-channel sensor chip (1cm x 1cm) with different nanostructured materials for chemical sensing

The nanosensor module (5"x 5"x 1.5") contained a chip of 32 sensors, a data acquisition board, sampling system, and a tank with 20ppm NO₂ in N₂.

This sensor chip was intergrated in the JPL E-nose aboard the International Space Station in January 2009 to monitor air quality in the crew cabin, especially formaldehyde.

Chemsensor on the Cell Phone

	Constant of the second	AP NASSA TECHNOL COLES 26.9 °C 23.3 %FH 102.13 kPa -66.7 m 0.0 ppm 0.0 ppm 0.0 ppm 0.0 ppm 0.0 ppm		VARIABLE VARIABLE Temperature: Humidity: Pressure: Altitude NH3:	ECHNOLOGIE 26.3 °C 42.3 %RH 101.65 kP -27.4 m		1. da 2. 3. 4.	Temperature ta Humidity data Pressure data Altitude data
tate o condition	About Setting COLORISA	Pump DX	ation	Cl2: CO: Sensor: S About Settin	0.0 ppm 0.0 ppm streaming ngs Pump OFF 6. App in	7. Sens formati	9. and 5. 8. or s on	Chemical ID d concentration Sensor state Pump state settings
	Temperature: Image: Constraint of the sector of the sect	27.0 °C 8.5 %RH 01.59 kPa -22.4 m 0.0 ppm 0.09 ppm 0.09 ppm 0.0 ppm						

Cell Phone Sensor Network

- Summary of our Nanochem Sensor
- Currently at TRL 5-6; took us 10 years to get here with an investment of over \$ 10 M from NASA, DHS and DTRA
- Flight tested twice: 1. launched on a Navy Satellite in 2007 aboard an Atlas V rocket; detected NO₂ supplied *in situ* from a small tube and reproduced ground test data; telemetry over 60 days. 2. launched on JPL electronic nose in Jan 2009 to International Space Station.
- US Army AMRDEC has independently tested our sensors to monitor the air space around missiles to monitor ageing and reliability issues. Sensor reproduces data from analytical instrumentation
- NASA KSC has tested the Sensor for hydrazine leak detection
- Dept of Homeland Security funded development of a cell-phone version of this sensor. DHS independently tested the sensor for undisclosed chemical threats in an undisclosed location in Alabama and informed us of the success. DHS also arranged for Los Angeles Fire Department test the cell phone sensors for CO detection in a public event in 2011.