

FP7 EU-RF "S3" project overview

COST Action TD1105 4th December, Rome (Italy)

- Surface ionization and novel concepts in nano-MOX gas sensors with increased Selectivity, Sensitivity and Stability for detection of low concentrations of toxic and explosive agents
- Project N. 247768
- Public web-site: <u>www.eurussias3.com</u>
- Period: Sept. 1st 2009 August 31st 2012

S3 partnership

EU partners

* EU coordinator * Consiglio Nazionale delle Ricerche (CNR) – Prof. G. Sberveglieri

RU partners

Kurchatov Institute, Institute of Applied Chemical Physics (RRC) – Prof. N. Zartetski and Prof. A. Vasiliev

* RU coordinator *

EADS Deutschland GmbH -Innovation Works (EADS) – Dr G. Mueller

Catalonia Institute for Energy rcs en Everytis de Catalunya Research (IREC) – Prof. J.R. Morante

Eberhard Karls Universitaet Tuebingen (EKUT) – Prof. U. Weimar

University of Cologne, Cologne (UNIKO) - Prof. S. Mathur

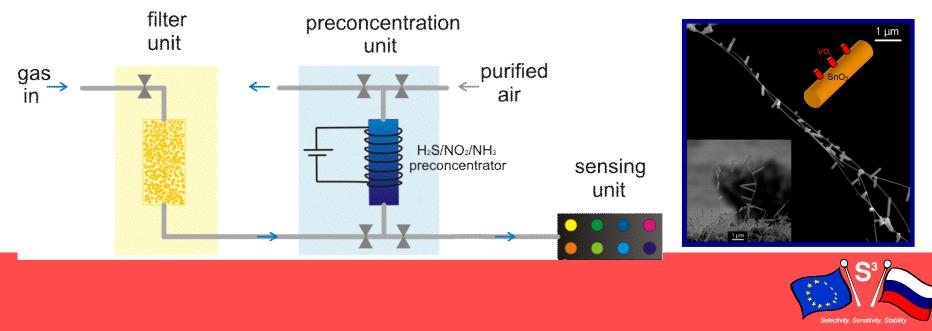
Moscow State University, Chemistry Department (MSU) – Prof. A. Gaskov

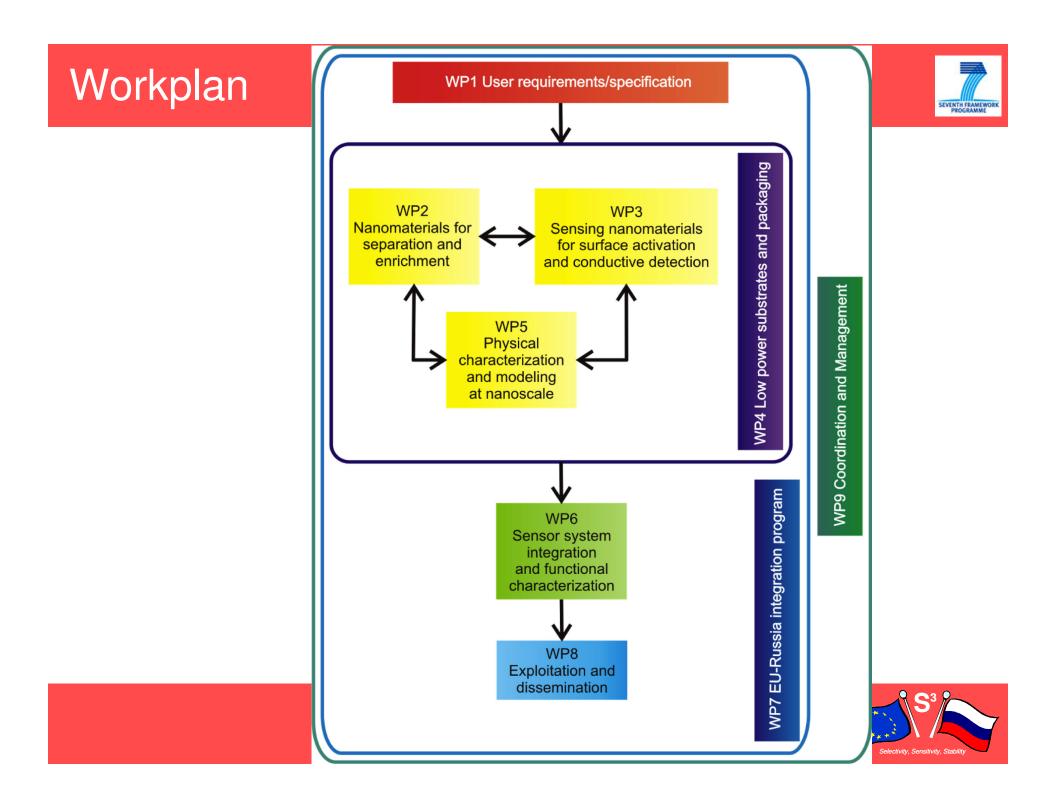
Research Institute of Electronic

Technique (NIIET) – Prof. A.

Shaposhnik

Moscow Engineering Physical Institute, Dept. of Nano and microelectronics (MEPHI) – Prof. V. Pershenkov and Prof. N. Samotaev




S3 goal: Developing breakthrough technologies in gas sensing

S3 approach:

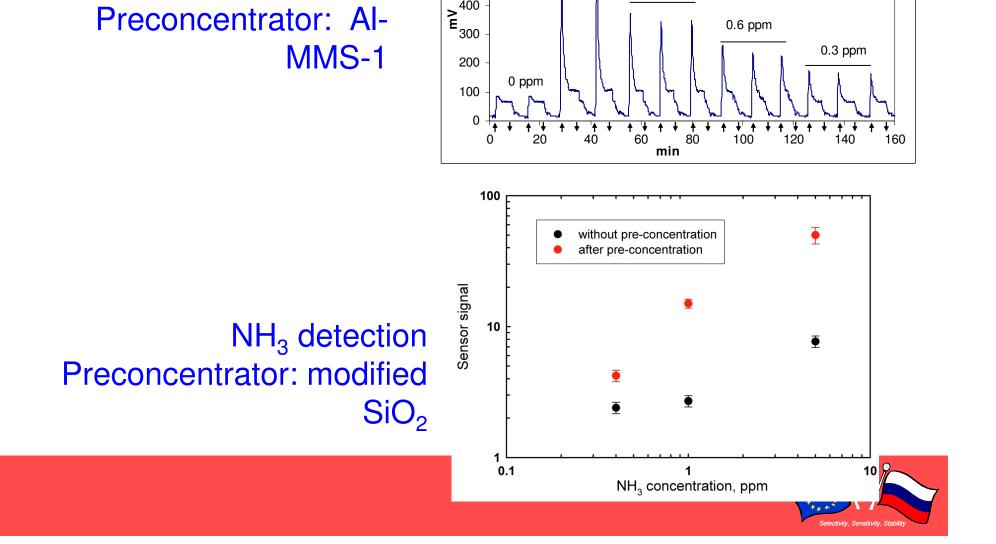
- Integration of molecularly engineered and functionalized semiconductor nanowires (NWs) and heterostructures into gas sensors
- Exploitation of different transduction mechanisms (resistive, surface ionization, catalytic/thermal)
- Exploitation of different sensor excitations: pulsed-temperature operation and combined self-heated operation mode
- Novel concepts of sampling, filtering and preconcentration of target substances based on nanostructured filter and enrichment materials

Planning and timetable

	Title	1-3	4-6	7-9	10- 12	13- 15	16- 18	19- 21	22- 24	25- 27	28-30	31- 33	34- 36
WP1	User requirements/specifications												
	Detection of explosives (NO2)							ļ					
Task 1.2								i					
WP2	Nano-materials for separation and enrichment							-					
Task 2.1	Preparation of innovative nanomaterials for enrichment												
WP3	Sensing nano-materials for surface activation and conductive detection												
Task 3.1	Preparation of Nanowires by PVD												
	Preparation of Nanowires by CVD												
	Chemical modification of NWs												
WP4	Low power substrates and packaging												
	Preparation of substrates							[
	Packaging												
WP5	Characterization and modeling at nanoscale							-					
	Morphological, Physical and Chemical Characterization							į					
Task 5.2	Modeling of bulk, surface, adsorption and charge transport												
	Operando investigations												
WP6	Sensor system integration and Functional Characterisation												
Task 6.1	Sensor system integration												
Task 6.2	Solid/liquid sampling and vapour conversion												
Task 6.3	Conductometric chemical sensors							i					
Task 6.4	Novel approaches: surface ionisation-based sensors and catalytic detection												
Task 6.5	Benchmarking							1					
WP7	EU-Russia integration program												
Task 7.1	Exchange of Researchers												
Task 7.2													
	Workshops							ļ					
	Joint Doctoral Degrees (JDDs)							į					
WP8	Exploitation and Dissemination												
Task 8.1	Dissemination												
	Exploitation												
WP9	Coordination and Management												
Task 9.1	Administrative, financial and legal management												

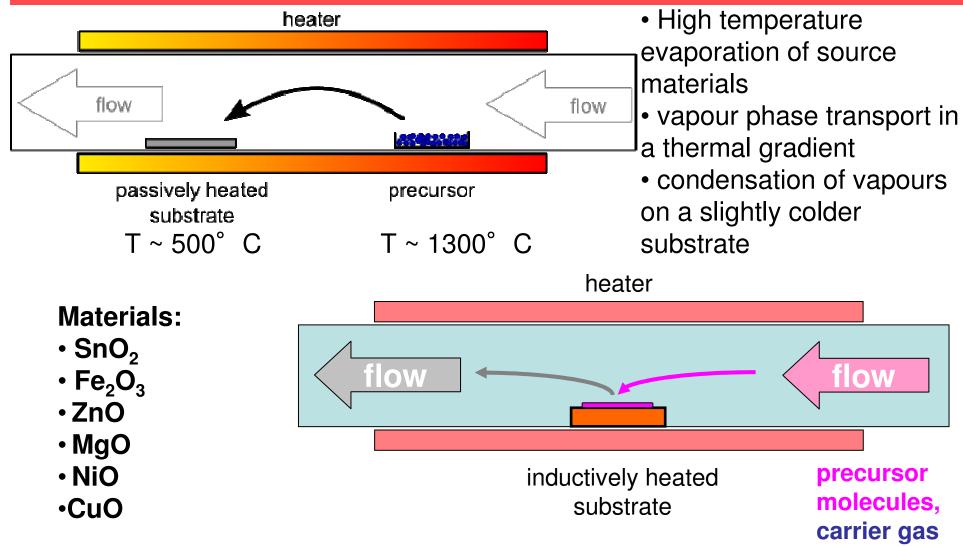
Research summary

Separation and enrichment unit Synthetic NO₂ (10 ppm) in N₂ air Flow controller Thermodesorber Sensor 12 -Cu(1,9)-MFI-50 + concentration, mg/m³ 00 Г MnO2(7,3%)/SiO Tube with Start heating sample Cu(1,9)-MFI-50 Initial NO 0 N 2 concentrarion Materials demands high active surface area Factors influencing on sorbent selectivity Time, min thermal stability at thermo cycling different types and geometry of pores network ✓ fast and effective sorption of target gas from gas specific gas molecule coordination functions (specific mixture active sites) ✓ no reactions with target gas with formation of **false** active sites density and localization products, minimal accumulation of other substances hydrophobic/hydrophilic or acid/base character of fast and quantitative desorption of target gases Catalyst for sorbents Sensor Adsorbent oxidation NO, NO₂ + NO


Nanomaterials for separation and enrichment Preconcentrator-sensor system SEVENTH FRAME PROGRAMM 700 2.4 ppm 600

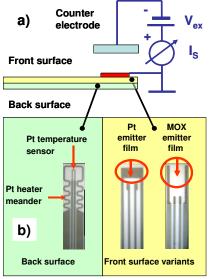
500

400


1.2 ppm

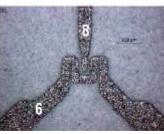
H₂S detection

Preparation of sensitive materials

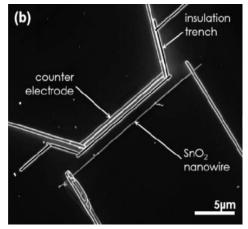


Sensors packaging

Integration of developed materials and developed substrates



Macroscopic


- Functional characterisation of sensing materials
- Novel sensing mechanisms

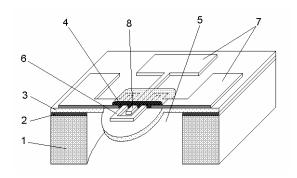
MEMS

- Functional characterisation of sensing materials
- New sensing mechanisms

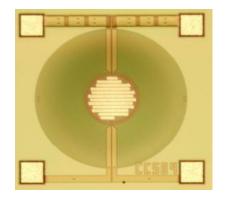
Single Nanowire

- Physics on nanoscale
- Novel sensing mechanisms

Side Activities: Flexible Substrates

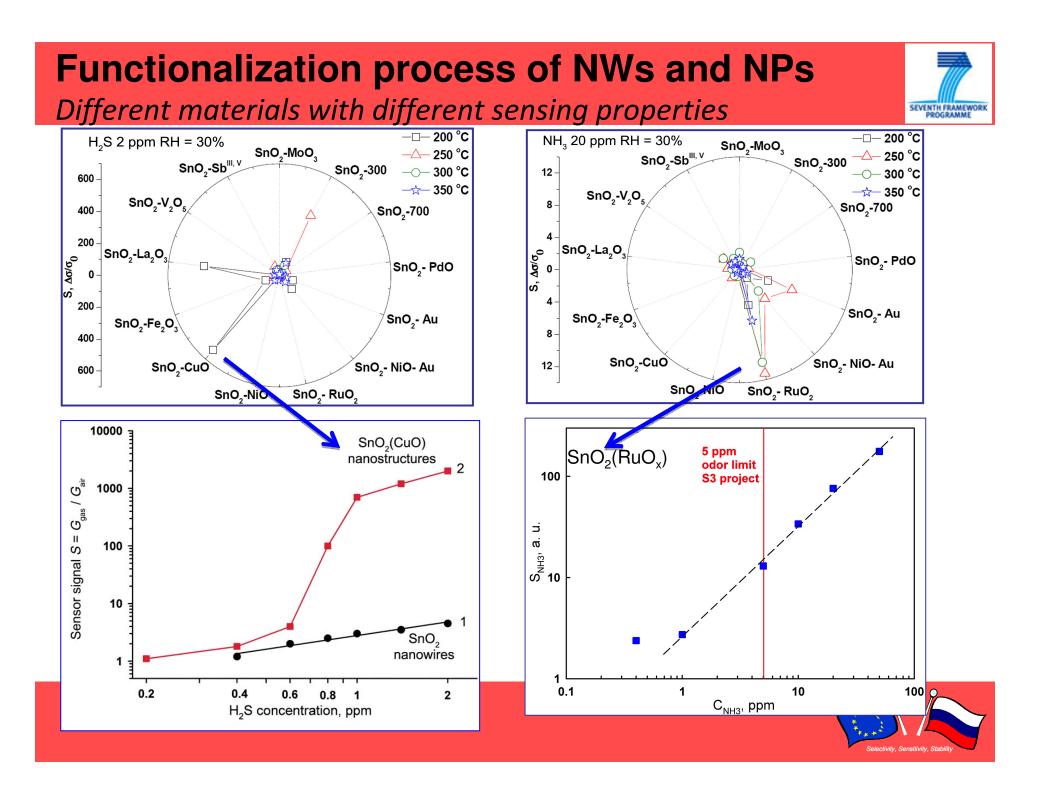


Ceramic vs. Silicon hotplates

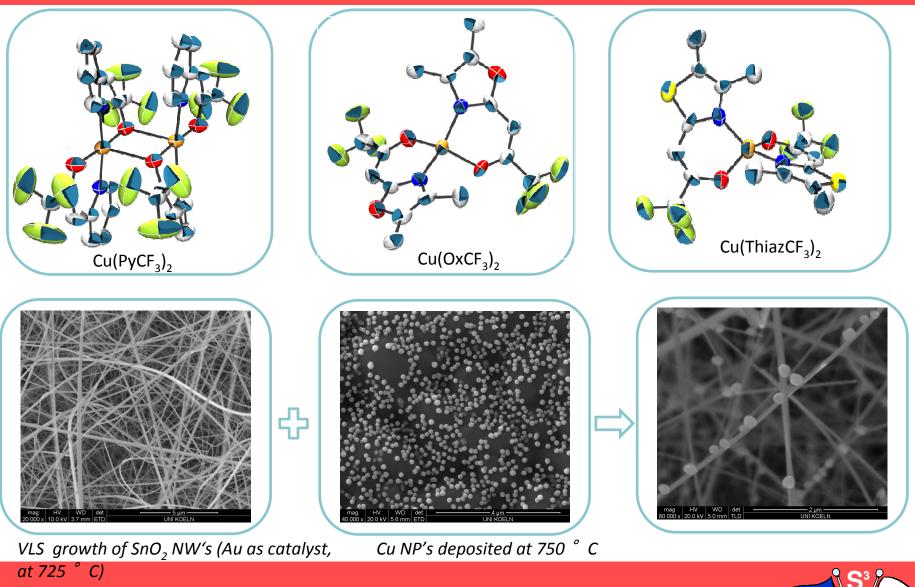

Ceramic microheater

Can sustain high processing temperatures across the entire substrate

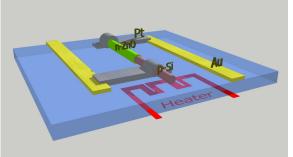
Confine deposition / annealing process by shadow masking !

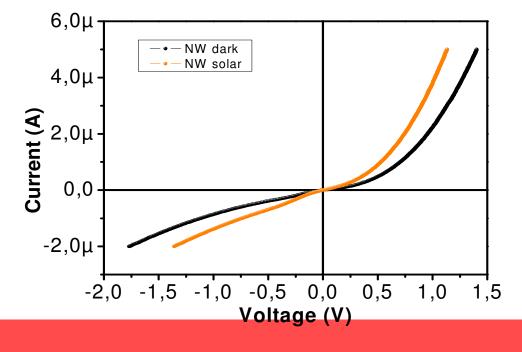

Silicon microheater

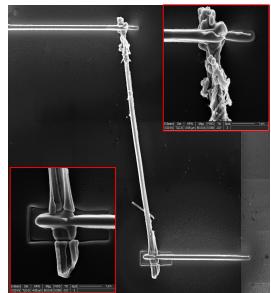
Can sustain high processing temperatures only in membrane centre

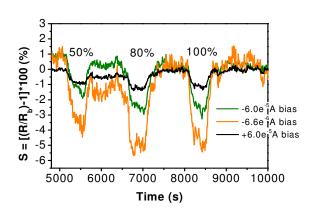

Confine deposition / annealing process to membrane centre !

Functionalization Example: *Copper (II) heteroarylalkenolates: New Precursor Family*

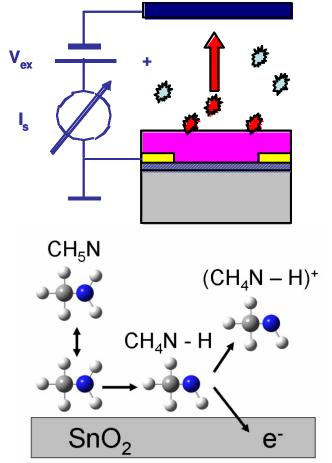



Sensor system integration and Functional Characterisation




New Concepts & Devices

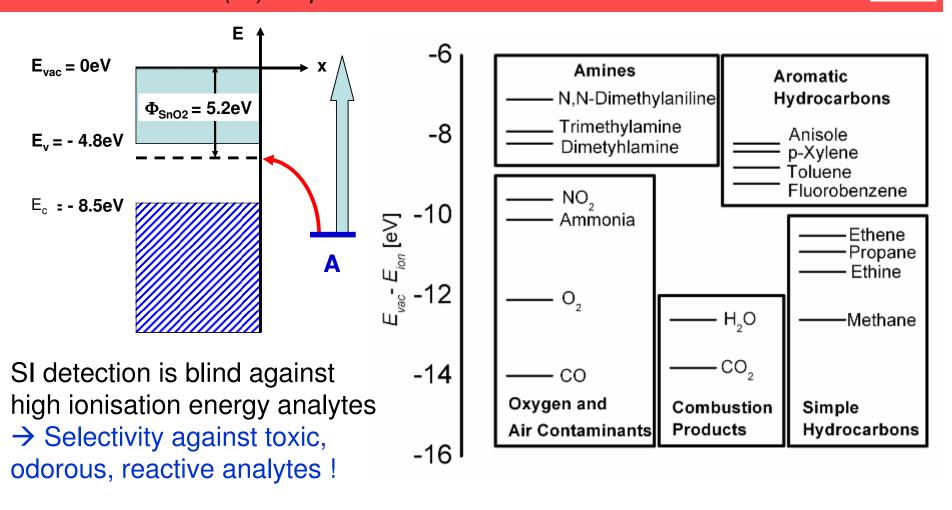
First devices based on heterostructures (ZnO@Si NWs)



Innovative transduction mechanisms *Surface ionisation (SI) response of MOX materials*

Surface ionisation (SI) response:

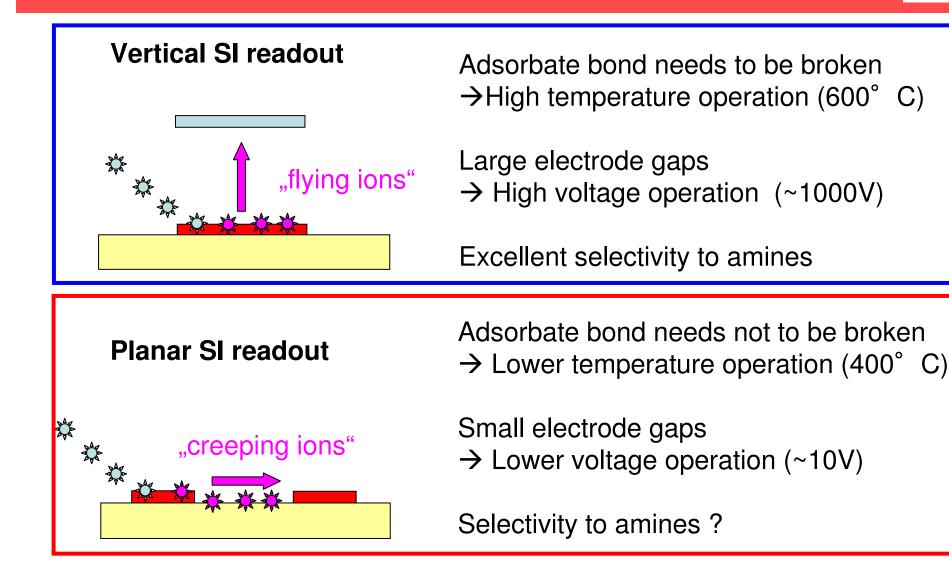
Valence electrons are transferred to empty electron states inside adsorbent solid.


Detection criterion: Ionisation energy

→ Selectivity towards higher interest analytes

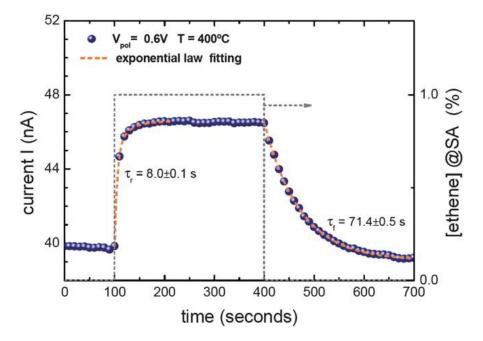
T. Fujii and T. Kitai, "Surface ionization mass spectrometry of organic compounds: nitrogen-containing aliphatic organic compounds", Int. J. Mass Spectrom. Ion Processes 71 129-140, 1986.

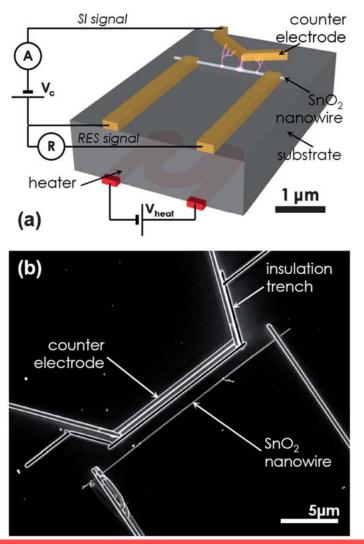
Innovative transduction mechanisms *Surface ionisation (SI) response of MOX materials*



Group selectivity: amphetamines and amines !!!

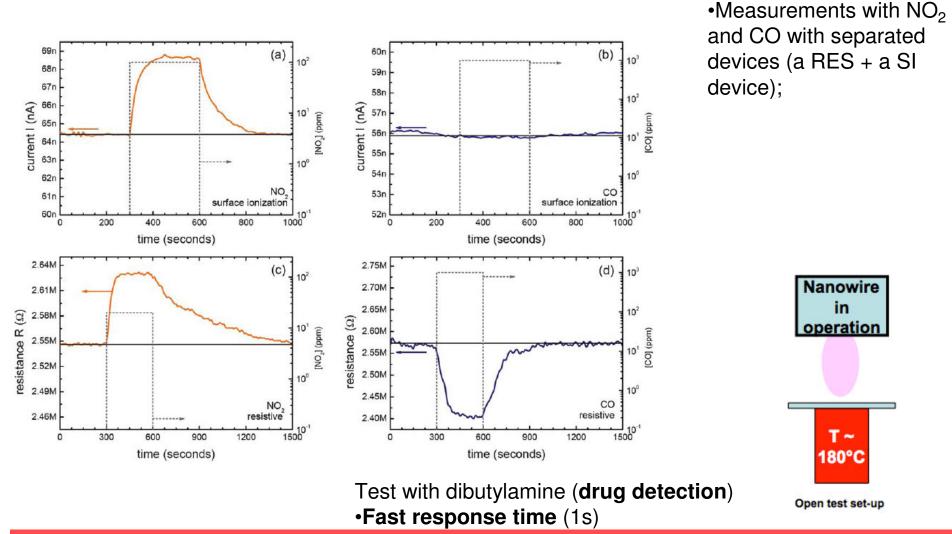
SI Response





Single nano wire experiment Surface ionization device

- Linear concentration dependence
- Fast time response
- Ionization current is obtained at low V (a few volts) and low T (300 $^\circ\,$ C)

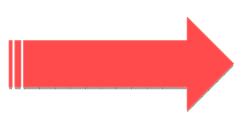

F. Hernandez-Ramirez et al, Nanoscale, 2011, 3, 630-634

Combination of SI and RES response to address **selectivity**

Training and integration material Exchange of scientists

Younger scientists for periods ranging from one to several months Senior scientists in the range of several days up to several weeks

Exchanges aim at the planning and execution of joint experiments at specific partner sites, preparation of samples and agreement on measurement protocols.


several exchanges between S3 partners during the last 2 years

Training and integration material *Tutorials*

Planning and execution of tutorials on topics of general interest (textbook level).

Activities particularly address younger researchers and doctoral students and aim at ensuring comparable levels of technological and scientific skills across the entire S3 consortium.

3 tutorials held within the S3 project

Tutorials and Workshops

Tutorials

- tutorials on topics of general interest (textbook level)
- Activities particularly address younger researchers and doctoral students
- Technological and scientific skills are standardized across the entire S3 consortium.
- 1st S3 spring school in Rimini, Italy, 10-14 May 2010
- 2nd S3 Summer School at Igora near St. Peterburg, Russia 5 8 July 2011
- 3rd S3 winter school February 13-15, 2012, Tuebingen (Germany)

Workshops

- Frontier Research Workshops (FRW), addressing researchers
 ✓ 1st S3 Workshop 2010 / Barcelona
- Industry Transfer Workshops (ITW), addressing industry
 - > 2nd S3 Workshop Summer 2010 / Athens
- S3 exhibition at SENSORS + TEST (Nuremebrg) 22-24/05/2012

Training and integration material *Joint Doctoral Degrees*

The ultimate and most effective integration measure.

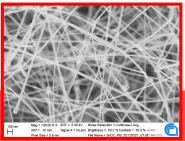
A joint supervision of the Doctoral Degree Work by professors of both universities.

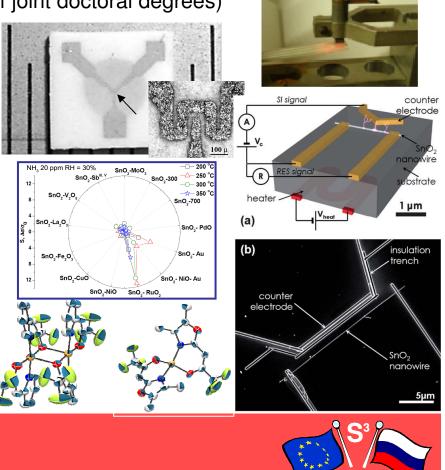
Efficiency arises from their long term character and the possibility to collocate young scientists with other scientists in the EU and Russian partner laboratories.

JDD program is running between MSU and UNIBS. Two active JDD students within the S3 project.

S3 results and impact

S3 Results and impact:


- Increased stability of NW-based sensing materials will positively affect the reliability of the developed sensors
- Increased cooperation between EU Union and Russian groups (exchanges of researchers, common workshops and tutorials, establishment of joint doctoral degrees)


Research Results

- Innovative transduction mechanisms
- Single nanowire devices
- Functionalization processes for NWs and NPs
- Sensor substrates
- Sensor packaging
- Measurement protocols
- Nanomaterials for enrichment and separation

Teaching and integration Results

- Training material
- Integration tools (JDD)

Exploitation of S3 results

• Foundation of spin-off companies:

- RU Spin-off "Analit MEPHI", http://www.analitmephi.ru/
- EU-RF spin-off company (in progress)
- Industrialization and commercialization efforts:
 - RU partners:
 - negotiations with companies aimed to:
 - co-production of the gas fire detectors for forest areas in the Alps;
 - co-production of flow meters for aerospace applications;
 - EU partners: negotiation with companies aimed to:
 - Integration of CVD synthesis process with MEMS substrates;
 - Development of nanowire based gas sensors;
 - EADS AG actions:
 - Support from commercial partners for commercialization of devices;
 - Licensing technology to supplier SMEs;
 - Incorporate technology supplier SMEs into EADS supply chains;
- Use of S3 results in follow-on research programs
 - A total of 6 other projects/project applications benefit from S3 results
 - Surface ionization devices are going to be further developed/exploited in the FP-7 DIRAC (EADS) and SNOOPY (EADS + CNR) projects

Advantages of EU-RF collaboration

- Different and synergetic approaches to research
- Complementary know-how and competences
- EU projects \rightarrow research oriented
- RF project \rightarrow industry oriented
- Of course there were challenges to face
 - Different bureaucracy, timings, duration...
 - but...together we were able to overcome these difficulties and gain knowledge and experience
- Now we look for new joint calls for integrated projects in Horizon 2020

Pictures and Awards

Dr. Gerhard Müller (at left), accepts his award as the newest Great Inventor for EADS' Hall of Fame. Joining him on stage are Airbus President and CEO Tom Enders, EADS Chief Technical Officer Jean Botti and EADS CEO Louis Gallois.

Selectivity, Sensitivity, Stability