Assessment of the health impact of the industrial emissions in the environmental management of the "Taranto Case"

Prof. Giorgio Assennato
Direttore Generale ARPA - Puglia

TARANTO (Pop. 192,810), Apulia, S Italy, on the Gulf of Taranto, an arm of the Ionian Sea.

Taranto is the chief military port of Italy. It is also an industrial, and fishing center. Productions include steel, metal products, refined petroleum, cement, machinery, and ships.

Founded by the Spartans, according to tradition (8th century BC.) ,it became one of the most prosperous cities in Magna Græcia. (Great Greece), and is now site of several historical tourist attractions, including a national museum, a theater etc.

It was built up on the extreme eastern side of the Isthmus, which was joined to the Peninsula Salentina continent, on the coastal road along Mare Grande (Big Sea) and an ample lagoon called Mare Piccolo (Small Sea) (that's why Taranto is named "the City with Two Seas").

Particulate matter Guideline values

PM2.5
$10 \mu \mathrm{~g} / \mathrm{m} 3$ annual mean
$25 \mu \mathrm{~g} / \mathrm{m} 3$ 24-hour mean
PM10
$20 \mu \mathrm{~g} / \mathrm{m} 3$ annual mean
$50 \mu \mathrm{~g} / \mathrm{m} 3$ 24-hour mean

The 2005 AQG set for the first time a guideline value for particulate matter (PM). The aim is to achieve the lowest concentrations possible. As no threshold for PM has been identified below which no damage to health is observed, the recommended value should represent an acceptable and achievable objective to minimize health effects in the context of local constraints, capabilities and public health priorities.

Fig.1. Percentage of people living in cities with various PM10 levels in $\mu \mathrm{g} / \mathrm{m} 3,2009$

EXPOSURE TO PARTICULATE AIR POLLUTION AND RISK OF DEEP VEIN THROMBOSIS Baccarelli A, Martinelli I, Zanobetti A, et al. Arch Intern Med 2008; 168:920-927

CONCENTRATION-RESPONSE FACTORS FOR HUMAN HEALTH EFFECTS ASSOCIATED WITH PM10

Annual risk factor given a $1 \mathrm{ug} / \mathrm{m} 3$ change in annual average PM10 concentration:
Mortality risk: $1.80 \mathrm{E}-05$

Chronic bronchitis risk: 6.10E-05 [for population 25 years and older]
Respiratory hospital admissions: 8.40E-06

Cardiac hospital admissions: 3.00E-06
Emergency room visits: 2.40E-04
Asthma symptom days: 5.80E-02 [for 4.7% of population with asthma]
Restricted activity days: 5.80E-02 [for population 18 years and older]

Contents

Page
Foreword III
Part One 1-6
Background 1-4
A staged Approach to investigations 4-6
Part Two 7-17
stage 1: prelimnary irvestigation 7-9
Stage 2: examination of the envrormental data 10
tage 3: examination of the local health profle $1-12$
Stage 4: a detailed assessment of emissions 13-15
tage 5: a more detaled investigation or study 6-17
Part Three 18-22
Who should do what? 18
Handling the Outoome of Investigations 19-20
Shouid there be a health stusty? 20-21
The kessons learned 22
Appendices 23-54
Appendix 1: The regulatory regimes 23-32
Appendix 2: Heath authorities and integrated Pollution Prevention Control 33-35
Appendix 3: interpreting routinely available data on respratory disease n the light of emfronmental health concerns 36-44
Appendix 4: Useful Addresses and websites 45-50
Appendlu 5: Reports and references $51-54$

Orru H, Teinemaa E, Lai T, Tamm T, Kaasik M, Kimmel V, Kangur K, Merisalu E, Forsberg B.
Health impact assessment of particulate pollution in Tallinn using fine spatial resolution and modeling techniques.

Environmental Health. 2009;8:7

Figure I
Modeled ($200 \times 200 \mathrm{~m}$ grid) annual average concentration of $\mathrm{PM}_{2.5}$ in Tallinn, $\mu \mathrm{g} / \mathrm{m}^{3}$.

The number of premature death due to PM2.5 pollution in Tallinn

City district	Number of population	Annual exposure to local PM2.5 ($\mu \mathrm{g} / \mathrm{m} 3$)	Number of Premature deaths (95\% CI)	Number of premature deaths 1/1000 (95\% CI)	The loss of life expectancy in years (95\% CI)
Haabersti	38031	9.5	23 (6-42)	0.60 (0.16-1.10)	0.52 (0.14-0.90)
Mustamäe	62589	14.0	63 (16-112)	1.01 (0.26-1.79)	0.78 (0.20-1.34)
Nõmme	38268	7.2	18 (5-31)	1.01 (0.26-1.79)	0.78 (0.20-1.34)
Kesklinn	47105	17.1	51 (13-91)	1.08 (0.28-1.93)	0.94 (0.25-1.62)
Kristiine	28878	16.2	30 (8-54)	1.04(0.28-1.87)	0.89 (0.24-1.53)
Lasnamäe	107280	10.2	73 (19-131)	0.68 (0.18-1.22)	0.56 (0.15-0.97)
Pirita	13192	6.4	5 (1-8)	0.38 (0.08-0.61)	0.36 (0.09-0.61)
PõhjaTallinn	53621	9.3	33 (9-59)	0.62 (0.17-1.10)	0.52 (0.14-0.89)
TOTAL	388964	11.6	296 (76-528)	0.76 (0.20-1.36)	0.64 (0.17-1.10)

Figure 4
Decrease of life-expectancy due to $\mathbf{P M}_{2.5}$ pollution in Tallinn.

Figure 3
The total number of YLL due to $\mathbf{P M}_{2.5}$ pollution in Tallinn.

Medie aritmetiche e pesate dei valori di concentrazione mensile di b(a)p in ng/me nei 3 siti di Taranto

VIA MACHIAVELLI	VIA ALTO ADIGE	TALSANO
media pesata	media pesata	media pesata
1.31	0.36	0.35
media aritmetica	media aritmetica	media aritmetica
1.39	0.39	0.38

Andamento mensile di concentrazione di benzo(a)pirene

Estimate of cancer risk

BaP in class 1/ARC - carcinogenic for humans
> Uncertainty about the quantitative estimate and the risk and the dose-response relationship
PAHs are a mixture, which the different components have different potential carcinogen, BaP used as a substance index

- Revision of estimates available in the literature:

Table 12. Summary of unit risk estimates for $\mathrm{B}[a] \mathrm{P}$ and for PAHs with $\mathrm{B}[a] \mathrm{P}$ as the indicator substance (life-time risk per $\mathrm{ng} / \mathrm{m}^{9}$ of $\mathrm{B}[a] \mathrm{P}$).		
Basis for calculation	Unit risk	Reterence
Animal experiments		
Inhalation of Blal in hamsters (Thyssen et al. 1981)	$0.28 \times 10^{-6} \mathrm{a}$	RIVM (1989)
Inhalation of $\mathrm{B}[\mathrm{alP}$ in hamsters (Thyssen et al. 1981)	$0.37-1.7 \times 10^{-6 . b}$	CARE (1994); Collins et al. (1991); Muller (1997)
Inhalation of $\mathrm{BlalP}+\mathrm{SO}_{2}$ in rats (Laskin et al. 1970 cit RIVM 1989)	0.59×10^{-63}	RIVM (1989)
Inhalation of BlalP in mice (Knizhikow et al. 1982 cit. RIVM 1989)	$400 \times 10^{6 a}$	RIVM (1989)
Intratracheal instillation of $\mathrm{B}[\mathrm{a}] \mathrm{P}$ in hamstors		
Saffiotti et al. (1972)	4.4×10^{-60}	CARE (1994); Collins et al. (1991)
Feron et al. (1973)	$4.8 \times 10^{-6} \mathrm{~b}$	CARE (1994); Collins et al. (1991)
Inhalation of coal tar/pitch aerosol with $\mathrm{B}[a] \mathrm{P}$ as the indicator substance	$20 \times 10^{-6} \mathrm{~b}$	Heinrich et al. (1994)
Epidemiology (PAH with B[a]P as indicator\|		
U.S. coke-oven workers	87×10^{-6}	WHO (1987, 2000)
U.S. coke-oven workers	23×10^{-6}	Muller (1997)
U.S. coke-oven workers	50×10^{-6}	Pott (1985)
U.K. gas workers	430×10^{-6}	Pike (1983)
Smoky coal indoors in China	67×10^{6}	RIVM (1989)
Most appropriate astimate	100×10^{-6}	RIVM (1989)
Aluminum smoilers	90×10^{-6}	Armstrong ot al. (1994); converted from workplace exposure to continuous lifetime exposure

${ }^{a}$ Linear extrapolation. ${ }^{\text {b }}$ Linearized multistage model.

Estimation of $\mathrm{B}(\mathrm{a}) \mathrm{P}$ related

carcinogenic risk

Estimated health impact on the population of the district-TamburiLido Azzurro in Taranto

Starting from the average concentration of BaP detected at the site of via Machiavelli in Taranto in 2010 ($1.82 \mathrm{ng} / \mathrm{m} 3$) and using the unit risk value indicated by the WHO ($8.7 \times 10-5$ to $1 \mathrm{ng} / \mathrm{m} 3 \mathrm{BaP}$), an incremental risk was estimated being equal to:

Incremental Lifetime Cancer Risk $=8.7 \times 10^{-5}\left(\mathrm{ng} / \mathrm{m}^{3}\right) \times 1.82\left(\mathrm{ng} / \mathrm{m}^{3}\right)=15.8 \times 10^{-5}$

Estimated excess of cases of lung cancer in the population of the districtTamburi Lido Azzurro (17,644 inhabitants on April 9, 2009) due to a lifetime exposure at the measured level of BaP , is equal to:
$15.8 \times 10^{-5} \times 17644=2.79$ cancers

Estimate of cancer risk

US -EPA considers excess cancer risks that are below about 1 chance in $1,000,000\left(1 \times 10^{-6}\right.$ or $\left.1 E-06\right)$ to be so small as to be negligible, and risks above 1E-04 to be sufficiently large that some sort of remediation is desirable

Risk Assessment Guidance for Superfund, 1989

Table 3-3. Summary of Cancer Risk Assessment Screening Analysis

Constituent	AK Steel Middletown	AK Steel Ashland	Erie Coke	Tonawanda
Benzo(a)pyrene	2×10^{-10}	4×10^{-9}	2×10^{-10}	2×10^{-10}
Benzo(a)anthracene	2×10^{-10}	4×10^{-9}	3×10^{-10}	2×10^{-11}
Benzene	2×10^{-5}	5×10^{-4}	7×10^{-6}	5×10^{-5}
Benzene soluble organics	5×10^{-5}	8×10^{-4}	2×10^{-4}	1×10^{-4}
Benzo(b)fluoranthene	2×10^{-10}	4×10^{-9}	2×10^{-10}	4×10^{-11}
Benzo(k)fluoranthene	1×10^{-10}	2×10^{-9}	2×10^{-10}	2×10^{-13}
Chrysene	6×10^{-11}	1×10^{-9}	7×10^{-11}	6×10^{-12}
Nickel	2×10^{-9}	4×10^{-8}	3×10^{-9}	6×10^{-10}
Arsenic	3×10^{-8}	6×10^{-7}	3×10^{-8}	2×10^{-8}
Beryllium	5×10^{-10}	1×10^{-8}	6×10^{-10}	1×10^{-10}
Cadmium	2×10^{-9}	4×10^{-8}	2×10^{-9}	9×10^{-10}
Total	7×10^{-5}	1×10^{-3}	2×10^{-4}	2×10^{-4}

Table 3-10. Inhalation Cancer Risk and Hazard Quotient for Exposed Population

Site	Facility-Level Maximum Risk	Hazard Quotient
AK Steel-Middletown	5×10^{-5}	NI^{b}
AK Steel-Ashland	5×10^{-4}	Benzene -0.4
Erie Coke	1×10^{-4}	Arsenic $\rightarrow 0.07$
Tonawanda	1×10^{-4}	NI

${ }^{\text {a }}$ Maximum risk at 70 year exposure duration
${ }^{\mathrm{b}} \mathrm{NI}=$ not included in analysis
Results reflect exposure from all emission sources, (i.e., MACT I,
MACTII, and the By-Product Recovery Plant)

Figure 3-1 Cancer Risk Isopleths Around AK-Steel Middletown

Figure 3-2 Cancer Risk Isopleths Around AK-Steel Ashland

Figure 3-3 Cancer Risk Isopleths Around Erie Coke

Figure 3-4 Cancer Risk Isopleths Around Tonawanda Coke

Simulation of PM10 concentration of industry and residents

Tabella 13. Associazione tra esposizione a polveri inquinanti (PM_{10} proveniente dalla zona industriale) e mortalità per causa. Rischio relativo per $10{ }^{\circ} \mathrm{g} / \mathrm{m}^{3} \mathrm{PM}_{10}$

Causa (ICD-9-CM)	Maschi*			Femmine ${ }^{\text {t* }}$		
	HR	Low	Up	HR	Low	Up
Tutte le cause (001-999)	1,02	1,00	1,05	1,01	0,99	1,03
Cause naturali (001-799)	1,03	1,00	1,05	1.00	0,98	1,02
Tumori maligni (140-208)	1,01	0,97	1,05	0,98	0,94	1,01
Esofago (150)	1,38	0,95	2,02	0,73	0,41	1,31
Stomaco (151)	1,03	0,87	1,22	1,07	0,93	1,23
Colon retto (153-154)	0,85	0,72	1,00	0,90	D,80	1,00
Fegato e dotti biliari (155-156)	0,84	0,71	0,99	0,99	0,89	1,10
Pancreas (157)	1,15	0,96	1,39	1,02	0.89	1,16
Lainge (161)	0,87	0,64	1,17			
Trachea, bronchi e polmoni (162)	1,02	0,96	1,09	0,97	0,85	1,10
Pleura (163)	1,12	0,90	1,38	1,00	0,73	1,37
Connetivo e tessuti molif (171)	1,53	1,01	2,31	0,80	0,48	1,34
Mammella (174)				1,04	0,96	1,13
Prostata (185)	1,14	1,01	1,28			
Testicolo (186)	0,56	0,16	1,97			
Vescica (188)	1,00	0,85	1,15	1,12	0,91	1,38
Rene (189)	0,98	0,64	1,50	0,78	0,44	1,39
Encefalo ed altri tumori del SNC (191-192; 225)	1,08	0,88	1,33	0,83	0,68	1,01
Tessuto linfatico ed ematopoietico (200-208)	1,05	0,91	1,22	0,90	0,80	1,02
Linforri non-Hodgkin (200-202)	1,09	0,86	1,39	0,90	0,73	1.11
Leucemie (204-208)	1,04	0,81	1,33	0,94	0,77	1,15
Malattie neurologiche (330-349)	1,05	0,91	1,22	1,09	1,00	1,19
Morbo di Parkinson (332)	1,12	0,83	1,50	0,90	0,09	1,17
Malattie cardiovascolari (390-459)	1,01	0,97	1,05	1,01	0,98	1,03
Malattie cardiache (390-429)	1,02	0,98	1,07	1,05	1,01	1,08
Malatie ischemiche del cuore (410-414)	1,06	0,99	1,14	1,11	1,06	1,18
Eventi coronarici acuif (410-411)	1,06	0,96	1,18	1,11	1,02	1,20
Malattie cerebro-vascolari (430-438)	0,96	0,88	1,05	0,90	0,85	0,95
Malattie apparato respiratorio (460-519)	0,97	0,90	1,04	1,00	0.94	1,07
Infezioni delle vie respiratorie (460-466,480-487)	0,91	0.77	1,07	0,95	0,85	1,06
BPCO (490-492, 494, 496)	0,97	0,89	1,06	1,02	0.93	1,11
Malattie apparato digerente (520-579)	1,04	0,96	1,13	0,97	0,90	1,03
Malattie renale (580-599)	1,10	0,95	1,29	1,10	1,00	1,22

Association between primary industrial PM10 and hospital cases. Relative risk by $10 \mu \mathrm{~g} / \mathrm{cubic}$ meter

MALES			FEMALES		
HR	LOW	UP	HR	LOW	UP

Pop AGE 0-14							
cancer	$(140-208)$	1,25	0,91	1,71	1,27	0,89	1,80
diseases of the respiratory tract	$(460-519)$	1,09	1,05	1,12	1,09	1,05	1,13
respiratory tract infections	$(460-466,480-487)$	1,12	1,08	1,16	1,12	1,07	1,17
Asthma	(493)	0,79	0,62	1,02	0,70	0,49	1,00

Forastiere et al. 2012

Hazard Ratio (HR), Cox model stratified by follow-up period, adjusted by age and socioeconomic status

Number of attributable cases (and AR\%) to industrial
primary PM10for hospital cases (1998-2010)

-		Total cases	Attributable cases	95\% Cl	AR \%
Pop AGE 0-14					
cancer	(140-208)	89	17	0-35	19.5
diseases of the respiratory tract	(460-519)	8769	638	456-820	7.3
respiratory tract infections	(460-466,480-487)	6281	627	478-776	10.0

Environment and Health in Taranto : a proposal of ARPA Puglia and ASL to national department of Environment during the IPPC process

1. Source apportionment of atmospheric PM10 PM2.5 and its deposition;
2. Biomonitoring of PAH and heavy metal exposure in general population of Taranto, at different distance from industrial area;
3. Short-term effects of pollution on human health;
4. Long-term effects of pollution on human health;
5. Case-control study on non Hodgkin lymphomas, soft tissue sarcomas and exposure to PCDD/Fs and PCB.

Grazie per l ${ }^{\text {attenzione }}$

