European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir* COST Action TD1105

WGs and MC Meeting at Rome, 4-6 December 2012

Action Start date: 01/07/2012 - Action End date: 30/06/2016

Year: 2012-2013 (Starting Action)

Prof. George Papadopoulos

MC Member, Sub-WG2.3 Leader

Industrial Systems Institute / Greece

Scientific context and objectives in the Action

• Sub-WG2.3 Scientific Context & Challenges:

- Functional characterization, design, realization and management of new costeffective wireless sensor-systems for AQC
 - Active monitoring & control
 - Low power design & energy efficiency
 - Network planning and management mechanisms & tools
 - Utilization and mapping of standards

• Matching WG2 Action:

- Objectives:
 - Report/Protocols for integration of portable gas sensor-systems for AQC
 - Protocols for development of wireless sensor network for AQC
- Deliverables:

- Recommendations for AQC wireless sensor networks management

Current Research Activities

- Active monitoring and control of sensors to enhance:
 - Reliability degree
 - Calibration requirements
 - Processing capabilities

- Communication efficiency
- Re-configuration mechanism
- Low power electronics for optimum performance minimum power dissipation
 - VLSI and RF/mixed analog chip design (Collaboration with Applied Electronics Laboratory (APEL), University of Patras)
- Power efficient techniques based on:
 - Middleware utilization
 - Energy efficient protocols
 - Communication parameters handling EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Current Research Activities

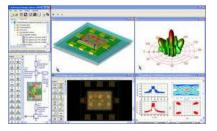
- Planning tools for the placement of the nodes and implementation of localization techniques.
- Middleware architectures for composability:
 - Handling of the heterogeneity of various interfaces and cooperating objects
 - Seamlessly connecting heterogeneous networks and communication techniques

• Utilization of standards (WiFi, Bluetooth, Zigbee, IEEE1451):

- Handling in a more structured way the increasing number of sensor nodes
- Achieving global WSN access at the networking level

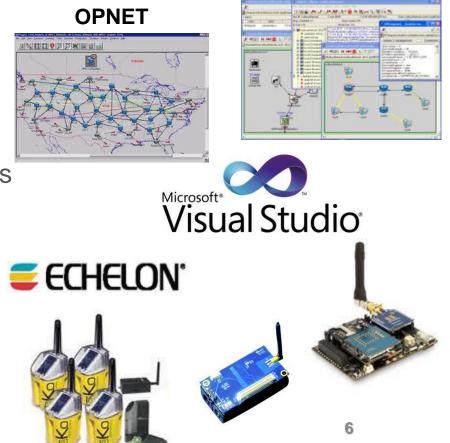
Research Facilities

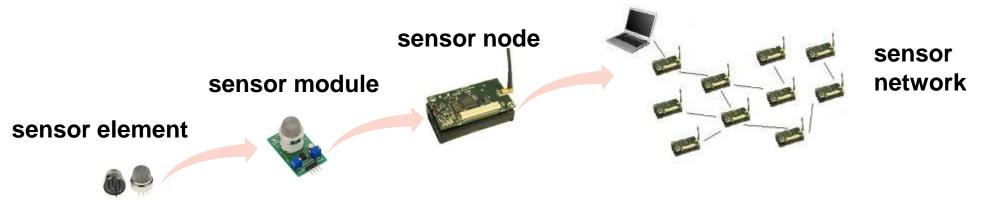
- Laboratory equipment to support embedded hardware and firmware development
 Agilent Technologies
 - Hardware schematic and PCB design entry stations:


Cadence, ADS, Mentor Graphics

- Osciloscopes and digital logic analysers
- Microcontroller development systems and tools
 Atmel STK500, STK600 (AVR microcontroller)

cādence[™]




Research Facilities

- Infrastructure for research and development of hybrid wired/wireless industrial networks and low power wireless sensor networks
 - Protocol simulators and analysers:
 Omnet++, NS2, OPNET, Tossim/TinyOS, Contiki/Cooja
 - Software development tools:
 Microsoft Visual Studio, Eclipse, Netbeans
 - Industrial network systems and tools:
 Echelon LonWorks, LabVIEW
 - WSN nodes and systems: Waspmote, Shimmer, TelosB, Iris, Mica2, <u>
 eVery Pro Series</u> EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

OMNET++

Suggested Priorities for future research

- Investigation of the integration effect of novel sensor element level materials and techniques on AQC sensor systems
 - Closely linked to WG1 activities
- Study of sensor elements active control techniques on all levels:
 - Sensor module → enhanced electronics (i.e. for self-monitoring)
 - Sensor node
 improved selectivity and stability via information correlation
 - Sensor network

 enhanced reliability, auto-configuration/calibration

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Suggested Priorities for future research

- Multi-sensor integration
 - Adoption of standards to describe sensor properties (i.e. IEEE1451)
 - System level models study, to achieve interoperability seamless integration

Low power technology

 Study of intelligent techniques to minimize power consumption (i.e. by exposing the hardware to the upper layers)

Networking technology and protocols

 Study of approaches which improve efficiency and performance of the system and the applications

Data processing

 Study of techniques which improve data accuracy, system robustness and efficiency