European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir* COST Action TD1105

#### WGs and MC Meeting at Rome, 4-6 December 2012

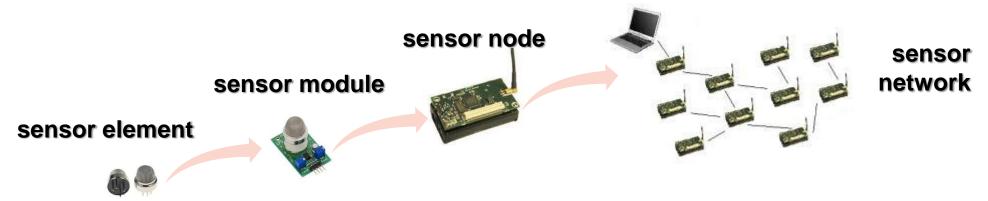
Action Start date: 01/07/2012 - Action End date: 30/06/2016

Year: 2012-2013 (Starting Action)



Andreas Schütze

**Action WG2 Chair** 


Saarland University, Lab for Measurement Technology Germany

## Scientific context and objectives in the Action

- Sensors and sensor systems for Air Quality Control
- WG2: from nanomaterials to sensor networks (Sensors, devices and sensor systems for AQC)
- WG2 objectives:
- Protocols for fabrication of gas sensors; specifically
  - integration of nanostructures and -materials in AQC gas sensors;
  - design and implementation of new transducers for AQC sensors;
  - device characterization for AQC gas sensors;
- Report for integration of portable gas sensor-systems for AQC;
- Report on integrated intelligence of AQC systems & distr. computing;
- Protocols for development of wireless sensors network for AQC;
- Report on IP Rights of gas nanosensors for AQC.

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

#### **Scope: from nanomaterials to sensor networks**



- Investigation of the integration effect of novel sensor element level materials and techniques on AQC sensor systems
  - Closely linked to WG1 activities
- Study of sensor elements active control techniques on all levels:
  - Sensor module → enhanced electronics (i.e. for self-monitoring)
  - Sensor node 
     improved selectivity and stability via information correlation
  - Sensor network 

     enhanced reliability, auto-configuration/calibration

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

# Suggested Priorities for future research (1/3)

**Research directions as PRIORITIES for APPLICATIONS:** 

- Outdoor air quality monitoring (imission control)
  - Better information for citizens and awareness of pollution
- Indoor air quality monitoring (imission control)
  - Controlled ventilation due to monitoring of hazardous VOC
  - Reduced health hazards plus improved energy efficiency
- Outdoor monitoring of pollution sources (emission control)
  - Identification of sources and minimization of emissions
- Closed loop process control (industrial, transport, home use)
  - Minimization of emissions at source, active countermeasures

# Suggested Priorities for future research (2/3)

#### **Research directions as PRIORITIES for SENSOR TECHNOLOGY:**

- Versatile µ-transducers for integration of various nanomaterials
  - Allow application specific adaptation and low cost
  - > Low power! (down to  $\mu$ W for single nanowire)
- Dynamic operation of sensors to gain more than one signal from a single sensor for higher selectivity and stability as well as possible self-monitoring at the sensor module level
  - Well known, but not yet standard: temperature cycling, EIS
  - New methods: RF, optical excitation (gas sensitive solar cell!), pulsed polarization, mass and dissipation in QCM
  - Modelling of interaction of sensing layer and gas/dust/aerosol



## Suggested Priorities for future research (3/3)

Research directions as PRIORITIES for SENSOR TECHNOLOGY:

- Selective filters integrated in sensors or sensor modules
- Dosimeter approach: integrated sensor response
- Nanoparticle detection for dust and aerosols!!
- Intelligent sensor modules for NO<sub>x</sub>, ozone, NH<sub>3</sub>, H<sub>2</sub>S, SO<sub>2</sub>, VOC
  - Electronics combined with sensor elements
- Intelligent sensor nodes and (heterogeneous) networks
  - Data pre-processing and processing (in node and/or in network: parallel and distributed computing)
  - Energy efficient communication

Goal: Demonstrate the potential of (micro) sensor systems in the context of environmental sensing (complementarity, added resolution – spatial and temporal), including an assessment of performance