

European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir* COST Action TD1105

## Examples of applications of sensors-systems for urban air quality monitoring in France



## Jérôme BRUNET

Institut Pascal – UMR 6602 of CNRS

Blaise Pascal University / FRANCE

## **Overview of urban AQC in FRANCE: legislation**

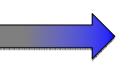
In FRANCE, everybody has the rights to inhale an air that does not affect his health and to be informed about the air quality he breathes

⇒ Law on Air and the Rational Use of Energy

Law nº96-1236 of December, 30<sup>th</sup> 1996, Official Journal L220-1, January 1<sup>st</sup> 1997.

→ Codified by the French Environment code

→ 18 decrees by law application


#### **Duties:**

Air Quality Monitoring

**Quality objectives definition** 

#### **Public information**

National policy implementation about monitoring, prevention and information on the air



Ecology, Sustainable Development and Energy Ministry



## **Overview of urban AQC in FRANCE: organization**



26 associations, accredited for Air Quality control (AASQA)

- ⇒ Air quality monitoring & information
- ⇒ Dissemination of results & forecasting
- Local authorities information

Scientific support :

LCSQA (Central Laboratory for Air Quality monitoring)





## Monitored pollutants & recommendations

#### European directives ⇒

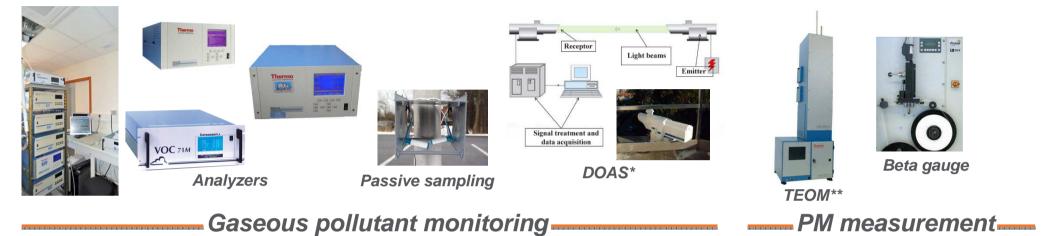
Pollutant

NO

NO

SO

C


| it                    | Limit value                                       | Quality<br>Objective | Information<br>threshold | Alert<br>threshold            | Critical<br>level | Target<br>Value |
|-----------------------|---------------------------------------------------|----------------------|--------------------------|-------------------------------|-------------------|-----------------|
| <b>)</b> <sub>2</sub> | 40 μg/m³ (year)<br>200 μg/m³ (hour)               | 40 µg/m³ (year)      | 200 µg/m³ (hour)         | 400 µg/m³<br>(during 3 hours) |                   |                 |
| )x                    |                                                   |                      |                          |                               | 30 µg/m³ (year)   |                 |
| <b>)</b> <sub>2</sub> | 125 μg/m³ (year)<br>350 μg/m³ (hour)              | 50 µg/m³ (year)      | 300 µg/m³ (hour)         | 400 µg/m³<br>(during 3 hours) | 20 µg/m³ (year)   |                 |
| 0                     | 10 000 μg/m³<br>(daily maximum<br>during 8 hours) |                      |                          |                               |                   |                 |

**French rules** 

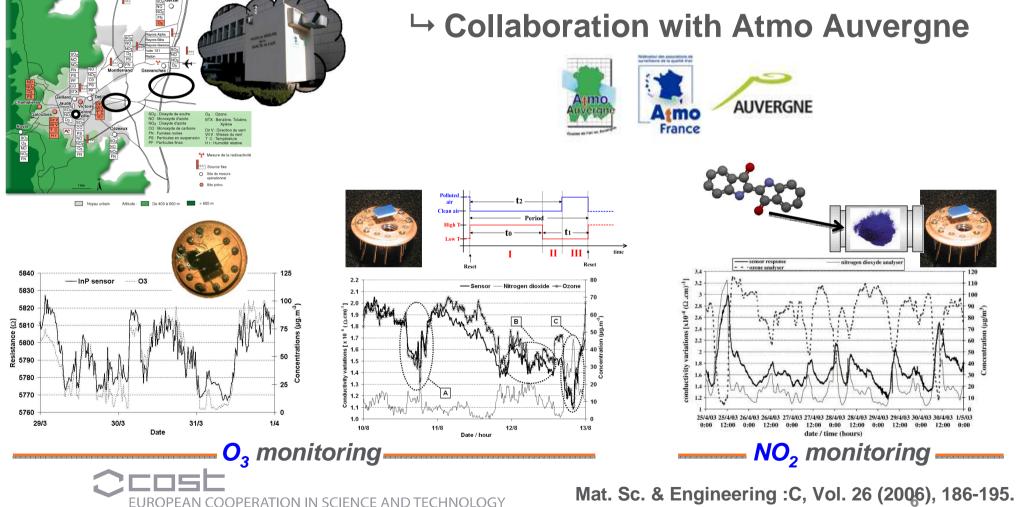
|                               | during 8 hours)                    |                                                            |                  |                  |                                                            |
|-------------------------------|------------------------------------|------------------------------------------------------------|------------------|------------------|------------------------------------------------------------|
| <b>O</b> <sub>3</sub>         |                                    | 120 μg/m <sup>3</sup><br>(daily maximum<br>during 8 hours) | 180 µg/m³ (hour) | 240 µg/m³ (hour) | 120 μg/m <sup>3</sup><br>(daily maximum<br>during 8 hours) |
| C <sub>6</sub> H <sub>6</sub> | 5 µg/m³ (year)                     | 2 µg/m³ (year)                                             |                  |                  |                                                            |
| PM 10                         | 40 μg/m³ (year)<br>50 μg/m³ (hour) | 30 µg/m³ (year)                                            | 50 µg/m³ (day)   | 80 µg/m³ (day)   |                                                            |
| PM 2.5                        | 27 µg/m³ (year)                    | 10 µg/m³ (year)                                            | 20 µg/m³ (year)  |                  |                                                            |

Directive 2008/50/CE of European Parliament and Council - may 21<sup>th</sup> 2008; decree n°2010-1250 21 oct 2010 French Environmental Code (articles R221-1 to R221-3) EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

#### **AQC network facilities**



(Source: Atmo Aquitaine –FRANCE)




AQC facilities (Source: AirParif –FRANCE)



\* Differential Optical Absorption Spectroscopy \*\* Tapered Element Oscillating Microbalance

## Gas sensors for urban AQC: our experience AQC station : sensors vs analyzers

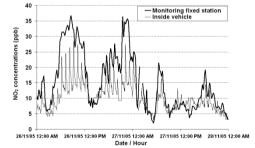


Thin Solid Films 490 (2005) 28–35

## Gas sensors for urban AQC: our experience Pollution measurements in urban bus



**Preliminary investigations** 






#### **Sensor measurements**







#### NO<sub>2</sub> predominant !



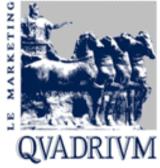


Légende de mesure...



#### **Underestimated passenger exposure by AQC stations**

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY


Sensors and Actuators B 130 (2008) 908–916

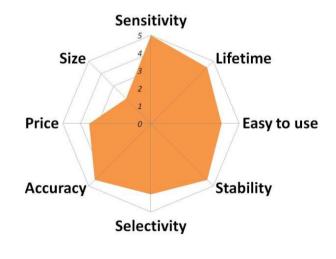
#### Gas sensors for urban AQC: marketing study

⇒ Consecutive to our patent deposition

N°: FR 08 03006 Date : 02/06/2008 Use of carbon nanomaterial as a filtration material impervious to O<sub>3</sub>

# Marketing Study about Gas Microsensors






## Gas sensors for urban AQC: marketing study Outdoor (AQC network)

Application: pollution monitoring in urban conditions

Evolution: additional solutions complementary to analyzers Specific campaigns of measurements

#### **Expected characteristics**



EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

#### <u>Guidelines</u>:

- Price = 5€ / sensor
   = 100-1000€ max
   with electronic unit
- 2. Selectivity
- 3. Lifetime
- 4. Certification required 9





## Gas sensors for urban AQC: marketing study In confined environment (park, tunnel...)

Application: pollution monitoring for air extraction control

Evolution: Substitution or additional solutions to analyzers Secure work areas

#### **Expected characteristics**

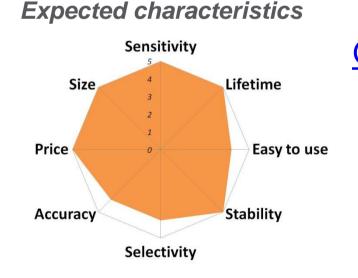


#### <u>Guidelines</u>:

Price = 5€ / sensor

 = 1000€ max
 for autonomous system

 Sensor lifetime






## Gas sensors for urban AQC: marketing study Automotive industry (passenger compartment)

<u>Application</u>: CO and NO<sub>2</sub> monitoring for driver security (Renault)

Evolution: option extended to all cars (Renault)



PERATION IN SCIENCE AND TECHNOLOGY

#### <u>Guidelines</u>:

- 1. Price = 5€ / sensor
- 2. Small size
- 3. Sensor lifetime = car lifetime
- 4. Fast response



DELPHI



### Gas sensors for french urban AQC : conclusions

- Good opportunities with AQC Associations
  - ⇒ in agreement with specifications
  - ⇒ previous experiences with microsensors
  - ⇒ certification required
- Attractive for monitoring in confined environments
  - ⇒ limited to few pollutants
  - ⇒ sensor must be competitive / analyzers
- Partial interest from Automotive sector
  - ⇒ already implemented in premium cars
  - ➡ low cost devices and dependent from legislation



## Gas sensors for urban AQC in France: outlooks



- Some local networks = open to sensors technology
   Validation of device in real-conditions
- NO
  ⇒ Technological monitoring on microsensors



- ⇒ Open to measurements campaigns with sensors
- Technological monitoring on microsensors defined in the Program for Air Quality Monitoring (PSQA)

