European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir* COST Action TD1105

WGs and MC Meeting at Rome, 4-6 December 2012

Action Start date: 01/07/2012 - Action End date: 30/06/2016

Year: 2012-2013 (Starting Action)

Prof. Jyrki Lappalainen

WG1: Sensor Materials and Nanotechnology (Vice-Chair) University of Oulu / Finland

Scientific context and objectives in the Action

- Background / Problem statement:
 - Development of new sensitive and selective gas sensor materials for environmental quality control, public safety issues, medical, automotive applications, air conditioning system setups in aircrafts, spacecrafts, vehicles, houses, etc.
- Brief reminder of MoU objectives:
 - Study the sensitivity of nanostructured MO films to harmful gases, *e.g.* NO_x, NO₂, H₂, and VOC's
 - Utilizing grain size and phase transition effects
 - Fabrication of sensors on flexible substrates PET/PEN substrates using printing techniques

University of Oulu

Founded in 1958
6 faculties
17 000 students
3 000 employees
Total funding EUR 208 million
Among the largest universities in Finland with an exceptionally wide scientific base

DESCRIPTION OF THE LABORATORY

- employees ~ 50 (Dec. 2008)
- 3 Professors, Chief Engineer, 3 Chief Assistants, Assistants,
- Laboratory Engineer, Secretaries
- projects funded by Tekes, EU, NIC, Academy of Finland
- over 40 industrial partners

Functional electroceramic thin films

Prof. Jyrki Lappalainen, Dr., Docent

Ceramics with some functionality:

- Ferroelectricity: PZT, PLZT, BaTiO₃, SrTiO₃
- Metal-insulator-transition: VO₂, V₂O₅
- Ionic / electronic conductivity: CeO₂
- Gas sensing: WO₃
- Others: ITO, ZnO, AZO, Sr₂MnWO₆,...

Effects of microstructure:

from amorphous to nanocrystal, polycrystal, or epitaxial thin films, and back to artificial materials, like superlattices
size effects on functionality, response

improvement, tailoring of the properties

Pulsed Laser Deposition (PLD):

- XeCl-excimer laser

- in situ deposition, RT deposition, and RTA heat treatments

Functional electroceramic thin films

Prof. Jyrki Lappalainen, Dr., Docent

Pulsed Laser Deposition (PLD): - XeCl-excimer laser (LamdaPhysik 201) λ = 308 nm (248 nm optional) • τ = 25 ns, E_{max} = 400 mJ, f_{max} = 10 Hz •optics with continuos energy adjustment •computer controlled micromovement stage for laser beam guiding and scanning

- Custom modified PLD chamber (K.J. Lesker) UHV capability (~10⁻⁷ mbar) computer controlled rotating two-target system sample holder ϕ = 1 inch, T_{max} = 900 °C gas atmosphere control from ~0.0005 mbar QCM rate/thickness monitor

- Fully computerized target motion, gas atmosphere and profile, temperature profile, and laser controllers in order to perform automatized PLD procedures.

Current research activities of the Partner (1/2)

 Current research topics at the partner organization: Pulsed Laser Deposition (PLD) of WO₃, VO₂, V₂O₅ nanoparticles for selective gas sensing:

WO₃ nanoparticles using room temperature PLD growth process and utilization of ferroelectric ε- WO₃ phase!
VO₂ nanoparticles utilizing metal-insulator-transition (MIT) effect in gas detection with improved selectivity!

- Vanadium-oxide mixed-phase and heterojunction structures!

Current research activities of the Partner (1/2)

- Current research topics at the partner organization: Inkjet-printing and low-temperature processing of decorated WO₃ nanoparticles on various substrates for selective gas sensing:
 - Fabrication of Ag, Pd, Pt nanoclusters on surfaces of
 WO₃ nanoparticles using chemical methods!
 (J.Mater.Chem. 22 (2012) 17878)

(a)

Ink droplet

Nanoparticle

Substrate

Solvent removal

Research Facilities available for the Partner (2/2)

- Research Facilities:
 - Fabrication of nanostructured materials: Pulsed-Laser-Deposition (PLD), Focused Ion Beam (FIB), CVD for MO nanofibres and CNT's, chemical methods for nanoparticle fabrication.
 - Materials structure characterization: XRD, XPS, Raman, FESEM, TEM, SPM, etc.
 - Electrical, optical, and mechanical characterization: DC 50 GHz-range electrical characterization, spectrophotometry, ellipsometry, nanointendation, etc.
 - Gas sensor measurement setup for basic gases.

Suggested Priorities for future research

- Research directions as PRIORITIES:
- Development of fabrication methods and characterization of WO₃, V₂O₅, VO₂, etc. nanoparticles.
- Utilization of phase transition effects in gas sensing process.
- Ink-jet printing of WO₃, V₂O₅, VO₂, etc. nanoparticles on flexible substrates in a low-cost mass-production process.

