European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir*

COST Action TD1105

WGs & MC Meeting at SOFIA (BG), 16-18 December 2015

New Sensing Technologies for Indoor Air Quality Monitoring: Trends and Challenges

Action Start date: 01/07/2012 - Action End date: 30/04/2016 - Year 4: 1 July 2015 - 30 April 2016

HIGH SENSITIVITY AND LOW OPERATION TEMPERATURE SENSORS USING Pt/CHROMIUM-TiO₂/Pt-SANDWICH LAYERS

Bilge Saruhan-Brings

WG1 Member

German Aerospace Center, Institute of Materials Research, Cologne/ Germany Bilge.saruhan@dlr.de

Scientific context and objectives

PROBLEM

- Robust detection of nitrogen oxides under the common conception of NOx (NO+NO₂) is highly demanding
 - NO and NO₂ results in sensor signals in the opposite direction to each other
 - At temperatures above 500 °C, thermodynamic equilibrium is on the NOside
 - Semiconducting oxides such as TiO₂ are good candidate materials for NO₂ sensing however, higher operating temperatures are required (> 400 °C)

Scientific context and objectives

REQUIREMENT

- Sensor systems that are capable of NO₂ sensing at temperatures << 400 °C
- For that necessary optimization needs:
 - Change in the electrical transport mechanism:
 - Sensing material can be nano-structured and/or
 - Crystal chemistry can be changed by doping
 - Change in the electrical signal output through metallic electrodes:
 - Sensor configuration can be altered

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

SOLUTION

• IDE vs. TBE with the same sensing material at 400°C

 Dynamic response of TiO₂:Cr sensing layer towards NO₂ with TBE configuration at 120 °C and 200 °C

The inset shows enlarged normalized dynamic response of the same sensor towards 200 ppm NO₂ at 120 °C and 200 °C

 Phase sequences by <u>TiO₂</u> (left) and <u>TiO₂:Cr</u> (right) layers during in-situ HT-XRD

XRD of ex-situ heat-treated (800 °C for 3 h) coatings exhibit:

- undoped TiO₂ layers consist of both anatase (64%) and rutile phases (36%)
- while TiO₂:Cr layers contains only rutile phase.

Impedance Measurements and Equivalent Circuit Modelling

 Sensing towards NO₂ with Pt-TBE configuration and sandwich TiO₂ layer

 Impedance Measurements and Equivalent Circuit Fitting towards NO₂ with TiO₂ and TBE sensor configuration at 400 °C

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

 Impedance Measurements and Equivalent Circuit Fitting towards NO₂ with TiO₂:Cr and TBE configuration at 400 °C

The advantageous sensor behavior is due to the <u>Cr-doping</u> introduced <u>oxygen vacancies</u> and holes

Not because of the different phase constituents (i.e. main phase anatase as in TiO_2 :Cr vs. rutile in undoped TiO_2)

Sensing behavior towards NO₂ with TiO₂:Cr and TBE sensor configuration

In the case of Cr-doping, as NO₂ interacts with the sensor layer:

- hole formation below conduction band results in large changes in true capacitance values ($C_{V0,0ppm} \ll C_{V0,200ppm}$)

This is because

- the inverse layer becomes thinner as NO₂ gas approaches to the surface
- occurrence of huge decrease in true capacitance value, C_{V0} (six orders of magnitude) as NO₂ diffuses through it

11

Sample/C _{NO2}	C _{TE/SL} (F)	C _{BE/SL} (F)	С _{v0} (F)	C _{gb} (F)
TBE-TiO ₂ /0-ppm	5.80×10 ⁻⁸	7.90×10 ⁻¹¹	1.08×10 ⁻⁷	1.87×10 ⁻⁴
TBE-TiO ₂ /200-ppm	1.19×10 ⁻⁴	2.81×10 ⁻⁷	1.05×10 ⁻¹⁰	3.72×10 ⁻⁴
TBE-TiO ₂ :Cr/0- ppm	9.94×10 ⁻⁴	2.10×10 ⁻⁵	3.46 ×10⁻⁵	×
TBE-TiO ₂ :Cr /200- ppm	5.56×10 ⁻⁴	1.77×10 ⁻³	2.72×10 ⁻¹¹	×

- Sensing behavior towards NO₂ with TiO₂:Cr and TBE sensor configuration
 - Dopant introduced oxygen vacancies and hole formation results in <u>faster</u> <u>electronic diffusion</u> through grains than diffusion at grain boundaries
 - Lower resistance in TiO₂:Cr samples is an indication for that
 - The grain boundary contribution (C_{gb}) seems to play minor/no role, because, the equivalent circuit model requires <u>no second Cole element</u>

Summary

Sensing mechanism with TBE configuration is attributed to various sensor parts

- NO₂ surface reaction at Pt-TE
- Diffusion through sensing layer (SL)
- Pt-TE and SL interface.

<u>Below Pt-TE:</u> Increase in the Schottky Barrier strongly due to NO_2 gas reaction with Pt-surface

At SL

For n-type TiO₂ layer between TBE,

- depletion region increases nearby the surface resulting in small change in true capacitance, C_{V0}
- Grain boundary diffusion contributes

For p-type TiO₂:Cr in contrast

- sensing mechanism is predominantly controlled by inversion layer

- holes driven faster electronic diffusion through grains

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Acknowledgement

My Co-workers

- Dr. Azhar Ali Haidry (for sensor development and measurement and equivalent circuit modelling)
- Cagdas Cetin (BSc.) (for equivalent circuit modelling)
- Dr. Klemens Kelm (for XRD analysis)

Dr. Michele Penza for invitation

Thank you for your attention

 Typical sensing mechanism with undoped TiO₂ and TiO₂:Cr adsorbates in the case of TBE sensor configuration.

For n-type TiO_2 : The conductivity is governed by the <u>depletion layer</u> where the Fermi level lies near the conduction level and the majority carriers are <u>electrons</u> (left).

For p-type Cr-TiO₂: The inverse layer is formed near the donor energy level where the Fermi level is situated and the majority carriers are holes (right).

Research Facilities available for the Partner (2/2)

SESAM – DLR-Köln

