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Scientific context and objectives 

• Robust detection of nitrogen oxides under the 

common conception of NOx (NO+NO2) is highly 

demanding 

• NO and NO2 results in sensor signals in the 

opposite direction to each other   

• At temperatures above 500 °C, 

thermodynamic equilibrium is on the NO-

side 

• Semiconducting oxides such as TiO2 are 

good candidate materials for NO2 sensing 

however, higher operating temperatures are 

required (> 400 °C) 

PROBLEM 
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Scientific context and objectives 

• Sensor systems that are capable of NO2 sensing at 

temperatures << 400 °C 

• For that necessary optimization needs: 

• Change in the electrical transport mechanism:  

- Sensing material can be nano-structured and/or 

- Crystal chemistry can be changed by doping 

• Change in the electrical signal output through 

metallic electrodes:  

- Sensor configuration can be altered 

 

REQUIREMENT 



4 

Current research activities 

• SOLUTION 

Interdigitale Electrodes 

(IDE) 

Top-Bottom Electrodes (TBE) 
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Current research activities 

• IDE vs. TBE with the same sensing material at 400°C  
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Current research activities 

• Dynamic response of TiO2:Cr sensing layer towards NO2 

with TBE configuration at 120 °C and 200 °C  

The inset shows enlarged 

normalized dynamic 

response of the same 

sensor towards 200 ppm 

NO2 at 120 °C and 200 °C 
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Current research activities 

• Phase sequences by TiO2 (left) and TiO2:Cr (right) layers 

during in-situ HT-XRD 

XRD of ex-situ heat-treated (800 °C for 3 h) coatings exhibit: 

- undoped TiO2 layers consist of both anatase (64%) and rutile phases (36%) 

- while TiO2:Cr layers contains only rutile phase.  
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Current research activities 

• Sensing towards NO2 with Pt-TBE configuration and sandwich 

TiO2 layer 

Impedance Measurements and  

Equivalent Circuit Modelling  
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Current research activities 

• Impedance Measurements and Equivalent Circuit Fitting 

towards NO2 with TiO2 and TBE sensor configuration at 400 °C  
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Current research activities 

• Impedance Measurements and Equivalent Circuit Fitting 

towards NO2 with TiO2:Cr and TBE configuration at 400 °C  

The advantageous sensor 

behavior is due to the Cr-doping 

introduced oxygen vacancies 

and holes 

 

Not because of the different 

phase constituents (i.e. main 

phase anatase as in TiO2:Cr  

vs. rutile in undoped TiO2)  
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Current research activities 

• Sensing behavior towards NO2 with TiO2:Cr and TBE 

sensor configuration 

In the case of Cr-doping, as NO2 interacts with the sensor layer: 

 - hole formation below conduction band results in large changes in true 

   capacitance values ( CV0,0ppm << CV0,200ppm) 

This is because 

 - the inverse layer becomes thinner as NO2 gas approaches to the surface 

 - occurrence of huge decrease in true capacitance value, CV0 (six orders of 

    magnitude) as NO2 diffuses through it 

Sample/CNO2 

  
CTE/SL (F) CBE/SL (F) CV0 (F) Cgb (F) 

TBE-TiO2/0-ppm 

  
5.8010-8 7.9010-11 1.0810-7 1.8710-4 

TBE-TiO2/200-ppm 1.1910-4 2.8110-7 1.0510-10 3.7210-4 

TBE-TiO2:Cr/0-

ppm 

  

9.9410-4 2.1010-5 3.4610-5  

TBE-TiO2:Cr /200-

ppm 
5.5610-4 1.7710-3 2.7210-11  
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Current research activities 

• Sensing behavior towards NO2 with TiO2:Cr and TBE 

sensor configuration 

- Dopant introduced oxygen vacancies and hole formation results in faster 

electronic diffusion through grains than diffusion at grain boundaries  

 

- Lower resistance in TiO2:Cr samples is an indication for that 

 

- The grain boundary contribution (Cgb) seems to play minor/no role, 

because, the equivalent circuit model requires no second Cole element  
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Summary 

Sensing mechanism with TBE configuration is attributed to various sensor 

parts 

- NO2 surface reaction at Pt-TE  

- Diffusion through sensing layer (SL) 

- Pt-TE and SL interface.  

 

Below Pt-TE: Increase in the Schottky Barrier strongly due to NO2 gas 

reaction with Pt-surface 

 

At SL 

For n-type TiO2 layer between TBE,   

- depletion region increases nearby the surface resulting in small 

change in true capacitance, CV0 

- Grain boundary diffusion contributes  

 

For p-type TiO2:Cr in contrast  

 - sensing mechanism is predominantly controlled by inversion layer  

 - holes driven faster electronic diffusion through grains 
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Current research activities 

• Typical sensing mechanism with undoped TiO2 and TiO2:Cr  

adsorbates in the case of TBE sensor configuration.  

For n-type TiO2 : The conductivity is governed by the depletion layer where the Fermi 

level lies near the conduction level and the majority carriers are electrons (left).  

 

For p-type Cr-TiO2: The inverse layer is formed near the donor energy level where the 

Fermi level is situated and the majority carriers are holes (right).  
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