European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir*

COST Action TD1105

WGs & MC Meeting at SOFIA (BG), 16-18 December 2015

New Sensing Technologies for Indoor Air Quality Monitoring: Trends and Challenges

Action Start date: 01/07/2012 - Action End date: 30/04/2016 - Year 4: 1 July 2015 - 30 April 2016

GAS SENSORS BASED ON METAL OXIDE NANOSTRUCTURES FOR SENSING OF AIR POLLUTANTS E. Şennik, O. Alev, O. Şişman, S. Öztürk, N. Kılınç, <u>Z.Z. Öztürk</u>¹

Zafer Ziya ÖZTÜRK

Function in the Action (MC, WG1&2, SIG II member)Gebze Technical University, Dept. of Physics,41400 Kocaeli, TURKEY

Scientific context and objectives in the Action

- The risky gases which may affect adversely air quality in the car are H₂, CO, H₂S, NH₃, NO₂, CO₂ etc. According to USA EPA standards the limit values of the concentration for one hour exposure are 35 ppm (part per million) for CO, 100 ppb (part per billion) for NO₂, 0,12 ppm for O₃, 75 ppm for SO₂, 10 ppm for H₂S etc.
- Within the frame of TD1105 EuAirNet, nanostructured doped-undoped metal-oxide semiconductor based gas sensors will be developed to control the air quality in car cabin including fuel cell battery operated vehicles.

Current research activities of Gebze Technical University

Research Facilities available for Gebze Technical University

Suggested R&I Needs for future research

- gas sensors based on doped/undoped nanostructured metal-oxide semiconductors will be developed for toxic gases such as H₂, CO, and NO₂.
- to fabricate inexpensive, sensitive and selective gas sensors for toxic gases in the car cabin from low level to high level concentrations with low power consumption,
- ZnO and TiO₂ nanostructures will be synthesized by using sol-gel, anodization, hydrothermal, chemical vapor deposition (CVD), and electrochemical methods.
- Fabricated sensor devices will be characterized against to gases H₂, CO, NO₂ and interference gases.

Fabrication of ZnO Nanowires

Anodic Aluminium Oxide Template

- 1. Fabrication of AAO
- 2. Coating of Au thin film on AAO surface
- 3. Attaching of Au coated AAO surface on Ti substrate with Ag paste

4. Etching of Al metal foil by HgCl₂

5. Removing of AAO barier layer

• ZnO nanotellerin SEM görüntüsü

Fabrication ZnO nanorods

 Coating of ZnO thin film on glass by sol-gel process

Electrochemical Deposition

Hydrothermal fabrication of ZnO Nanorods

in equi molar ZnNitrate and Hexamethylenetetramines solution at 90C for 3h in autoclavable glass beaker

GEBZE

XRD results of ZnO nanostructures

nanowires

nanorods

NO₂ Sensing Measurements ZnO and Y doped ZnO thin films

Fabrication of TiO2 Nanotubes

Anodic oxidation of Ti foil in aqueous HF solution for fabrication TiO2 nanotubes

Fabrication of TiO2 Nanowires

VOC Sensing Properties of Hybrid Nanostructures

VOC Sensing Properties of Hybrid Nanostructures

TiO_2 nanorods

Polymer/TiO₂ nanorods

VOC Sensing Properties of Heterostructures

H₂ Sensing Properties Heterostructure

17