European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir* 

**COST Action TD1105** 

## WGs & MC Meeting at SOFIA (BG), 16-18 December 2015

New Sensing Technologies for Indoor Air Quality Monitoring: Trends and Challenges

Action Start date: 01/07/2012 - Action End date: 30/04/2016 - Year 4: 1 July 2015 - 30 April 2016

## GRAPHITE/ZNO NANOROD JUNCTIONS FOR HYDROGEN SENSORS

### **Roman Yatskiv**

WG Member

Institute of Photonics and Electronics/ Czech Republic yatskiv@ufe.cz







## **Motivation**



## **Preparation of the ZnO NRs**

Hydrothermal growth (95°C, 3h) Zinc nitrate  $\{Zn(NO_3)_2 * 6H_2O(NO_3)\} + HMTA \{C_6H_{12}N_4\}$ 

#### SEM images of ZnO NRS prepared by hydrothermal growth on a ZnO NP seed layer.



SEM image of the ZnO NRs prepared by hydrothermal growth on a GaN substrate



SEM image of the ZnO NRs prepared by hydrothermal growth on a GaN substrate with lithographic patterns:



R. Yatskiv, V. V. Brus, M. Verde, J. Grym and P. Gladkov, Carbon 77, 1011-1019 (2014).

R. Yatskiv, J. Grym and M. Verde, Solid State Electron 105, 70-73 (2015).

R. Yatskiv, J. Grym, P. Gladkov, O.Cernohorsky, J.Vanis, J.Maixner, J.H.Dickerson, Solid State Electron (In Press) doi:10.1016/j.sse.2015.10.011

## Photoluminescence properties of the ZnO NRs

#### **Temperature dependent PL spectra of the** ZnO NRs – the deep level emission.



**1.82 eV** transition associated with the zinc interstitial, 2.05 eV transition which is typically observed in ZnO nanostructures prepared by chemical methods, is still under discussion; however, it is mostly ascribed to the transition from the conduction band to a specific defect level,

2.2 eV transition due to Zn(OH)<sub>2</sub> groups attached to the surface of ZnO NRs.

**Temperature dependent PL spectra of the** ZnO NRs – the near band edge emission



DBE (3.36 eV) exciton bound to neutral shallow donor, A (3.33 eV) exciton bound to structural defects, DAP (3.22 eV) shallow donor-shallow acceptor transition.

R. Yatskiv, J. Grym: Luminescence properties of hydrothermally grown ZnO nanorods, submitted to Superlattices and Microstructures EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

## Photoluminescence properties of the ZnO NRs

To obtain more information about the nature of defects in the ZnO NRs, a series of annealing experiments in different ambient atmospheres (air, N<sub>2</sub>, vacuum) were applied. The best optical quality of the ZnO NRs was obtained after annealing in N<sub>2</sub>.

SEM images of the as grown ZnO NRs (a), and annealed in nitrogen at 700°C (b) and 800°C (c).



4K PL spectra of the as grown ZnO NRs (a), and annealed in nitrogen at 700°C (b) and 800°C (b).



R. Yatskiv, J. Grym: Luminescence properties of hydrothermally grown ZnO nanorods, submitted to Superlattices and Microstructures

## Electrical characterization of the graphite/ZnO

Schematic cross section of the graphite/ZnO NRs junction.



Differential resistance Rdiff of the graphite/ ZnO NRs junctions vs. voltage. The inset shows the equivalent DC circuit.



**NRs junction** C-V characteristics of the graphite/ZnO



The concentration of donors N =  $1.24 \times 10^{16}$  cm<sup>-3</sup> in the ZnO NRs was calculated from C-V characteristics by using the following equation:  $2 \Delta V$ 

$$\mathbf{V} = -\frac{2}{q\varepsilon_{ZnO}\varepsilon_0} \frac{\Delta \mathbf{V}}{\Delta \left(\frac{S}{C_b}\right)^2}$$

The density of the charged uncompensated donor-type surface states  $N_{ass}$ = 6.9×10<sup>13</sup> cm<sup>-2</sup> at the graphite/ZnO NRs interface was calculated by :

$$N_{ss}^{a} = \frac{Q_{ss}}{qS} = \frac{1}{qS} \sqrt{2\varepsilon_{0}\varepsilon_{ZnO}qN(V_{bi} - V_{bi}')}$$

The high density of the interface states and barrier inhomogeneities at the graphite/ZnO NRs junction interface provide evidence of the predominance of the tunnel-recombination current transport mechanism via interface states. I-V characteristics graphite / ZnO NRs can by described by equation:

$$J = J_0^t \exp[\beta T] \exp[\alpha (V - JR_s)] = J_{00}^t \exp[\alpha (V - JR_s)]$$

The reverse J-V characteristic of an abrupt junction in the case of the tunneling at reverse bias is governed by the following equation :

$$J_{rev}^{c} = a_0 V \exp\left(-\frac{b_0}{\sqrt{\varphi_b + V_{rev}}}\right)$$

R. Yatskiv, V. V. Brus, M. Verde, J. Grym and P. Gladkov, Carbon 77, 1011-1019 (2014).

# The effect of surface morphology of ZnO NRs on sensing properties of the graphite/ZnO nanorod junction.







Current transient characteristics of

Ratio of  $I_{NBE}/I_{DLE}$  (calculated from PL) and sensitivity of graphite/ZnO NRs hydrogen sensor as a function of the diameter of the ZnO NRs.



The sensor response and response time parameters of the graphite/ZnO NRs junctions with different sizes of ZnO NRs

|            | Sensitivity,<br>S (%) | Response time,<br>t <sub>a</sub> (s) | Recovery time,<br>t <sub>b</sub> (s) |
|------------|-----------------------|--------------------------------------|--------------------------------------|
| (a)        | 14                    | 82                                   | 30                                   |
| <b>(b)</b> | 20                    | 109                                  | 24                                   |
| (c)        | 84                    | 101                                  | 14                                   |

R. Yatskiv, J. Grym, The effect of surface morphology of ZnO nanorods on the sensing response of graphite/ZnO nanorod junctions, in: IEEE SENSORS 2015 - Proceedings, 2015, pp. 150-153.

# Hydrogen sensing with the graphite/ZnO nanorod junctions decorated with Pt nanoparticles

Schematic diagrams of the fabrication process of graphite Pt NPs/ZnO NRs junction.



Current transient characteristics of (a) the graphite/ZnO NRs junction, and (b) the graphite Pt NPs/ZnO NRs junction measured at -0.1 V.



The sensor response and response time parameters

|     | Sensitivity, S<br>(%) | Response time,<br>t <sub>a</sub> (s) | Recovery time,<br>t <sub>b</sub> (s) |
|-----|-----------------------|--------------------------------------|--------------------------------------|
| (a) | 14                    | 82                                   | 30                                   |
| (b) | 700                   | 68                                   | 22                                   |

- R. Yatskiv, J. Grym, P. Gladkov, O.Cernohorsky, J.Vanis, J.Maixner, J.H.Dickerson, Solid State Electron (In Press) doi:10.1016/j.sse.2015.10.011
- R. Yatskiv, J. Grym, V. V. Brus, O. Cernohorsky, P. D. Maryanchuk, C. Bazioti, G. P. Dimitrakopulos and P. Komninou, Semicond Sci Tech 29 (4), 045017 (2014).
- J. Grym, R. Yatskiv, O. Cernohorský, M. Verde, J. Lorincík, V. H. Pham, T. Gebre and J. H. Dickerson, in Key Engineering Materials (2015), Vol. 654, pp. 213-217.

## **Conclusions:**

- ✓ Optical and electrical properties of the ZnO NRs prepared by hydrothermal method were presented.
- ✓We investigated the effect of the morphology and point defect concentration in hydrothermally grown ZnO NRs on the sensing properties of the graphite/ZnO NR junctions. A strong correlation between the concentration of point defects in ZnO NRs and the sensing properties of the graphite/ZnO NR junctions was observed.
- ✓ The hydrogen sensing properties were further improved when the graphite/ZnO nanorod interface was decorated with Pt nanoparticles. The sensing response was enhanced by a factor of 50, and shorter recovery and response times were achieved.



## **Acknowledgment**



Department of Synthesis and Characterization of Nanomaterials

J. Grym O. Cernohorsky M. Hamplova J. Vanis

