European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir*

COST Action TD1105

WGs & MC Meeting at SOFIA (BG), 16-18 December 2015

New Sensing Technologies for Indoor Air Quality Monitoring: Trends and Challenges

Action Start date: 01/07/2012 - Action End date: 30/04/2016 - Year 4: 1 July 2015 - 30 April 2016

CVD-GROWN NANOMATERIALS FOR HIGHLY SELECTIVE NO₂, H₂S OR H₂ SENSING

Eduard Llobet

Sub-WG Leader: Carbon nanomaterials Universitat Rovira i Virgili / Spain eduard.Llobet@urv.cat

Outline

- CVD growth of metal oxide nanomaterials
 - Nanomaterial vs target species (NO₂, H₂S, H₂)
- Coupling of NMs to transducer platform
 - Direct growth vs. transfer
 - Placing electrodes
 - Results (response, selectivity and mechanisms)
- Conclusions

• CVD requires high temperatures (≥ 850°c), VLS

In₂O₃

ZnO NWs grown over a) c-, b) r-, and c) a-planes of sapphire

AA-CVD requires moderate temperatures (≤ 500°C), VS

decorated with Au or Pt NPs

• AA-CVD requires moderate temperatures (≤ 500°C), VS

WO₃ NWs decorated with copper oxide NPs

• AA-CVD requires moderate temperatures (≤ 500°C), VS

WO₃ NWs decorated with Pd NPs

- Direct growth of nanomaterials can be done only when the temperature is compatible with the integrity of the transducer.
- High growth temperatures imply the use of transfer techniques.

Direct growth possible provided T≤ 500°C

• Different orientations of ZnO NWs result in different types of defects. Gronw by VLS method. Au NPs used as catalyst.

Different orientations of ZnO NWs result in different types of defects.

 In₂O₃ nano-octahedral grown by VS at 800°C. Then screen-printed onto alumina transducer.

 H_2

 WO₃ NWs (pure or metal loaded) grown by VS at 380 to 500°C onto MEMS transducers.

Selectivity analysis

WO₃ NWs (pure or metal loaded) grown by VS at 380 to 500°C onto MEMS transducers.

Detection mechanisms

Detection mechanisms

Conclusions

- CVD enables the growth of a wide range of single crystalline NMs with different morphologies
- The integration of these NMs into transducers not always simple
- Engineering of defects may be a way for tailoring sensitivity and selectivity
- Some niche solutions exist for the selective detection of H_2S , H_2 and NO_2 (if we filter out O_3).

Acknowledgements

Sergio Roso

- Fatima E. Annanouch (former PhD student)
- C. Bittencourt, UMONS, Belgium

P. Umek, JSI, Slovenia

C. Cané, I. Gràcia, IMB-CNM-CSIC, Spain

C. Blackman, UCL, UK

S. Vallejos, BUT, Czech Republic

Funded by:

- ICREA Academia Award
- MINECO grant no. TEC2012-32420
- NATO under the Science for Peace Programme grant no. SPS 984511
- Autonomous Government of Catalonia grant no. 2014 SGR 1267.
- European Science Foundation grant COST TD-1105 'EuNetAir'
- European Commission, H2020 Project 'TROPSENSE'

