European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir*

COST Action TD1105

WGs & MC Meeting at SOFIA (BG), 16-18 December 2015 New Sensing Technologies for Indoor Air Quality Monitoring: Trends and Challenges Action Start date: 01/07/2012 - Action End date: 30/04/2016 - Year 4: 1 July 2015 - 30 April 2016

Suitability of QCM coated with ttb-MPc as sensing device for BTEX monitoring at room temperature

Jérôme BRUNET

French MC Member,

involved in WG2, SIG 1 & 3, STSM

Institut Pascal – University Blaise Pascal / FRANCE

brunet@univ-bpclermont.fr

EUROPERN_ ESF provides the COST Office

Scientific objectives and application Sensitivity Sensitive and selective sensor-systems for gaseous pollutants monitoring Mineral ianic Acoustic Sensors Microwave (ICB-Dijon) **Chemical filters Conductimetric** Hybrid Nanocarbons Working protocols **Target analytes ?** Others... COOPERATION IN SCIENCE AND TECHNOLOGY

Special focus on BTX detection

A serious concern for indoor environments

DOI 10.1007/s10661-010-1404-9

Sensor-systems highly relevant for indoor AQC

Sensor strategy: sensing material

- **Aromatic macromolecules**
- High π -electrons delocalization

Aromatic interactions with analytes Adsorption sites for aromatic gas Adsorption easily reversible

Modularity of peripheral groups **Tuning of the sensing properties Modulation of sensitivity, selectivity**

Peripheral electron-donating groups Higher solubility Strengthening of aromatic interactions

Sensor strategy: transducing mode

70% of signal drift removed

Material: coating & characterizations

Homogenous layers Suitable for non-soluble MPc Control of thickness and deposition rate

Removal of long-chain groups

Sensing behaviour: effect of peripheral groups

Sensing behaviour: effect of metal

ttb-ZnPc

No influence on structural properties

No significant change on sensing characteristics

3

53

3

Performances of ttb-MPc based QCM sensors

Performances of ttb-MPc based QCM sensors

Sensor performances: limits

No significant response toward CO, H₂S and NO₂!

ASTHMAA project: objectives & strategy

ASTHMAA project: preliminary results

Investigated nanocarbons

Modulation of surface chemistry

Weakness of adsorption forces

Treatment by fluorination

Lower temperature of desorption

ASTHMAA project: preliminary results

Characterization of benzene adsorption

Temperature Programmed Desorption Mass Spectrometry (TPD-MS)

ASTHMAA project: preliminary results

Response of sensor-system towards benzene

ASTHMAA project: summary

Lowest desorbed quantity Lowest desorption temperature Highest delay of response

High number of oxygen groups

CNR-115

Weak forces of adsorption

physisorption

CGL-10

Highest desorbed quantity Low delay of response Highest desorption temperature

Low number of oxygen groups

Strongest physisorption

