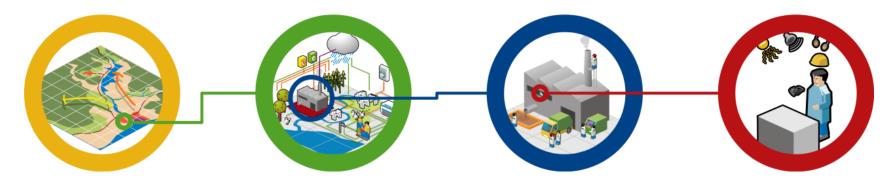
European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir*

COST Action TD1105

WGs & MC Meeting at SOFIA (BG), 16-18 December 2015

INDOOR AIR QUALITY ASSESSMENT IN A PUBLIC BUILDING USING MICROSENSORS AND CONVENTIONAL METHODS

Carlos Borrego


MC Member/ WG Member

João Ginja and Clara Ribeiro

IDAD-Institute of Environment and Development / Portugal

IDAD - Institute of Environment and Development

Air Pollution - IDAD carries out the following activities

- Stack emissions
- Ambient air quality
- Indoor air quality
- Odours assessment
- Inventories of air pollutants emissions
- Air quality modelling
- Air Quality Management

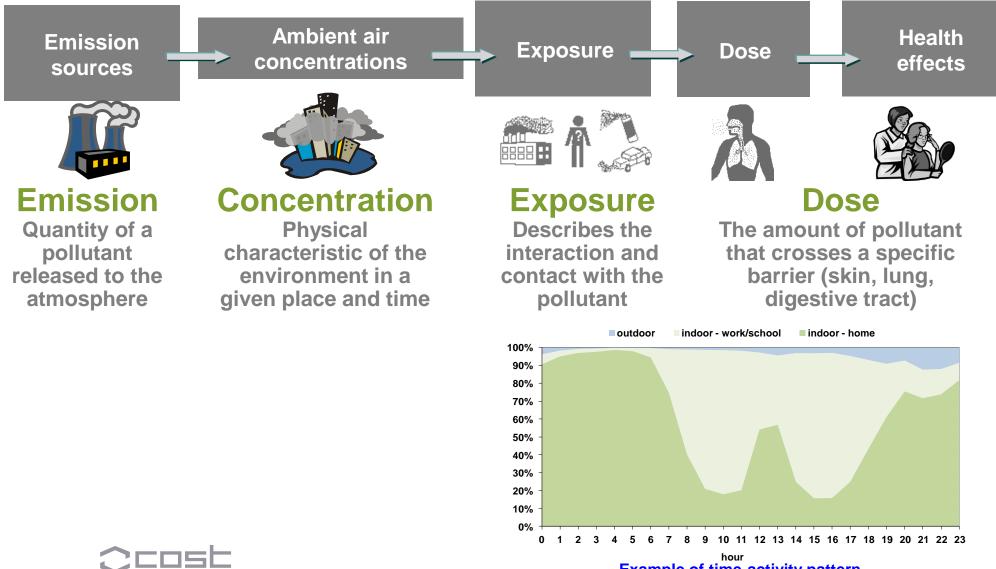
Impacts of Air Pollution – different scales

Global scale

• Climate change,...

Local scale

• Exposure to traffic emissions,...


Micro-scale

 Impacts on indoor air quality!

We spend 80-90% of our time indoors!

Air Pollution - from sources to health effects

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

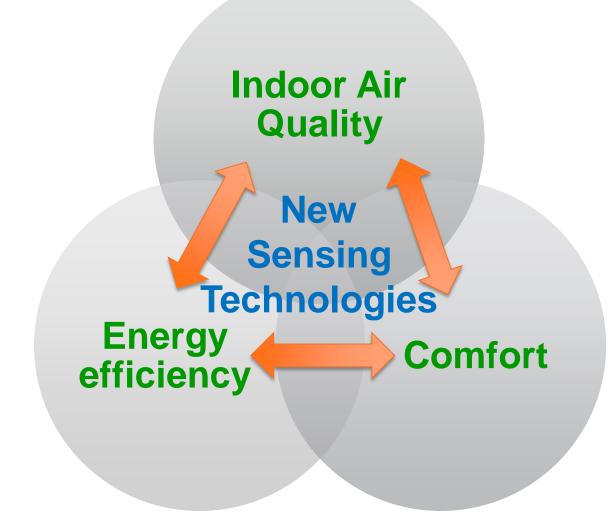
Example of time-activity pattern

INDOOR AIR QUALITY ASSESSMENT

Where?

- Homes
- School buildings
- Service buildings
- Hospitals
- Cultural/commercial areas
- Industrial buildings

What/how?

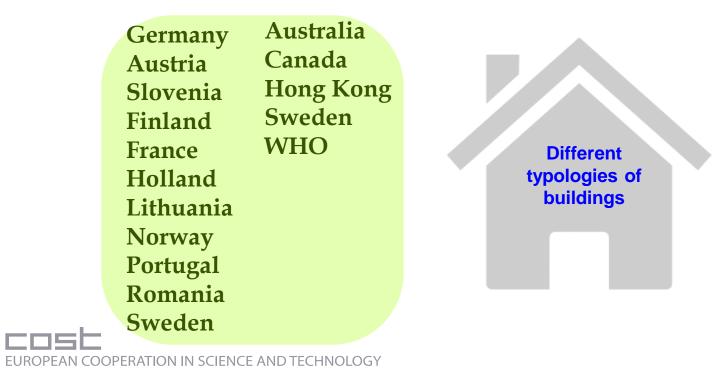

- Temperature, RH
- CO₂, CO, O₃, PM, VOC, BTEX, formaldehyde, radon
- Bacteria and fungi
- ... (Indoor air may contain over 900 chemicals, particles, and biological materials with potential health effects)

Why measure IAQ

- Occupants complaints
- Compliance with IAQ or ventilation standards
- Potential energy saving measures
- Research

- Indoor air quality assessment
- Identification of pollutant sources or critical areas
- Suggestion/implementation of best practices

Sustainable building



Pollutants and standards – international guidelines

• There are no specific regulation or binding resolutions from EU related with IAQ (standardized EU framework);

• Some countries have legislation/guidelines for indoor air quality;

• France - mandatory to monitor IAQ - the monitoring of IAQ in public buildings must be implemented gradually, particularly for establishments accommodating children (formaldehyde, benzene, and CO₂)

Pollutants and standards – international policies

										Hong						
Poluente		Alemanha	Austrália	Áustria	Canadá		Finlândia	França I	Iolanda	Kong		Noruega	Portugal	Roménia	Suécia	OMS
Amónia µg.m ⁻³	ND					50					40					
Amónia e																
aminas µg.m ⁻³	ND						20									
Bactérias																
UFC.m ⁻³	ND									1000			<(ext+350)			
Benzeno								10(1)								
μg.m ⁻³								5 (2)								
r5	ND	3						2 (3)	20				5			
	Inst		120*													
CH₂O	30 min			100								100		35		100
μg.m ⁻³	1 hora				123											
-0	8 horas				50					100			100			
	24 horas			60												
								100 (4)								
								30 (5)								
	ND	30				100	50	10(6)	1.2		10				50	
	15 min	~-							100				100	-		100
со	30 min	60			~-				60					6		~-
mg.m ⁻³	1 hora				25 ppm				30				35			35
	8 horas	15	10*		11 ppm				10	10		10	10			10
	24 horas				10 ppm			10 50					7			7
								10-50								
	ND					10	8	ppm			3				2	
CO ₂	8 horas							(-)		1000			1250			
ppm	ND					1670	1200	(7)				1000				
Fungos UFC.m ⁻³	ND	250											<exterior< td=""><td></td><td></td><td></td></exterior<>			
NO2	30 min	350										100				
	1 hora				480				200			100				200
μg.m ⁻³	8 horas									150						
	1 ano								40							40
	ND		240*								40				40	
	1 hora		210*		240											
03	4 horas		170*		10				100	420						
μg.m ⁻³	8 horas				40			110(0)	100	120						
								110 (8)								
	ND					100		240 (9)		400	30		50		50	
	8 horas								50	180			50			
PM10	24 horas								50							
µg.m⁻³	1 ano					100	50		20		50				40	
	ND 1 have				100	100	50				50				40	
	1 hora				100								25			
PM2.5	8 horas								25				25			
µg.m⁻³	24 horas								25							
	1 ano ND								10						15	
Radão	inst													140	12	
kadao Bq.m ⁻³	8 horas									200			400	140		
by.m ²					200					200			400			
	3 meses 1 a		200*		200		200									
	тd		200				200									
	ND					400		400				100			100	
COV Totais	1 hora		500*			400		400				100			100	
	8 horas		200.							600			600			
μg.m ⁻³	ND	1000								000			000			
	NU	1000														

6

Pollutants and standards – international policies

									Hong						
Poluente	Período	Alemanha	Austrália	Áustria	Canadá	Eslovénia	Finlândia	França Holanda	Kong	Lituânia	Noruega	Portugal	Roménia	Suécia	OMS
Amónia µg.m ⁻³	ND					50				40					
Amónia e															
aminas ug m ⁻³	ND						20								

Poluente	Período	Alemanha	Austrália	Áustria	Eslovénia	Finlândia	França H	Iolanda	Lituânia	Noruega	Portugal	Roménia	Suécia	OMS
Benzeno							10(1)							
µg.m⁻³	ND	3					5 (2) 2 (3)	20			5			
	15 min							100			100			100
со	30 min	60						60				6		
	1 hora							30			35			35
mg.m⁻³	8 horas	15	10*					10		10	10			10
	24 horas										7			7
							10-50							
	ND				10	8	ppm		3				2	
CO ₂	8 horas										1250			
ppm	ND				1670	1200	(7)			1000				
	8 horas										50			
PM10	24 horas							50						
μg.m ⁻³	1 ano							20						
	ND				100	50			50				40	

•	4 horas		170*										
O ₃	8 horas			40				100	120				
μg.m ⁻³							110 (8)						
	ND				100		240 (9)			30			50
	8 horas								180		50		
PM10	24 horas							50					
µg.m⁻³	1 ano							20					
	ND				100	50				50			40
	1 hora			100									
DM2 F	8 horas										25		
PM2.5	24 horas							25					
μg.m ⁻³	1 ano							10					
	ND												15
Radão	inst											140	
Bq.m ⁻³	8 horas								200		400		
	3 meses			200									
	1a		200*			200							
	ND				400		400			100			100
COV Totais	1 hora		500*										
µg.m⁻³	8 horas								600		600		
	ND	1000											

Indoor air quality monitoring

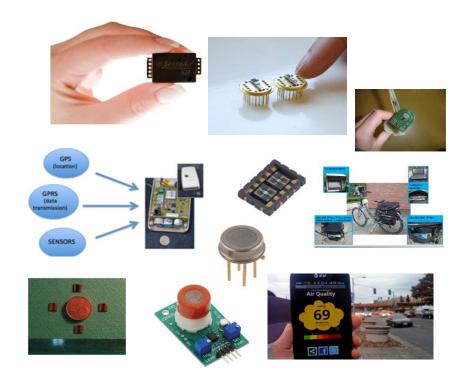
How? Equipment and methods

Standard methods

Low-cost sensing technologies

Price

Conventional techniques



New sensing technologies for air pollution control

Low-cost sensing technologies

Their use can be particularly valuable to have highly spatially and temporally resolved air quality data and to improve exposure assessment

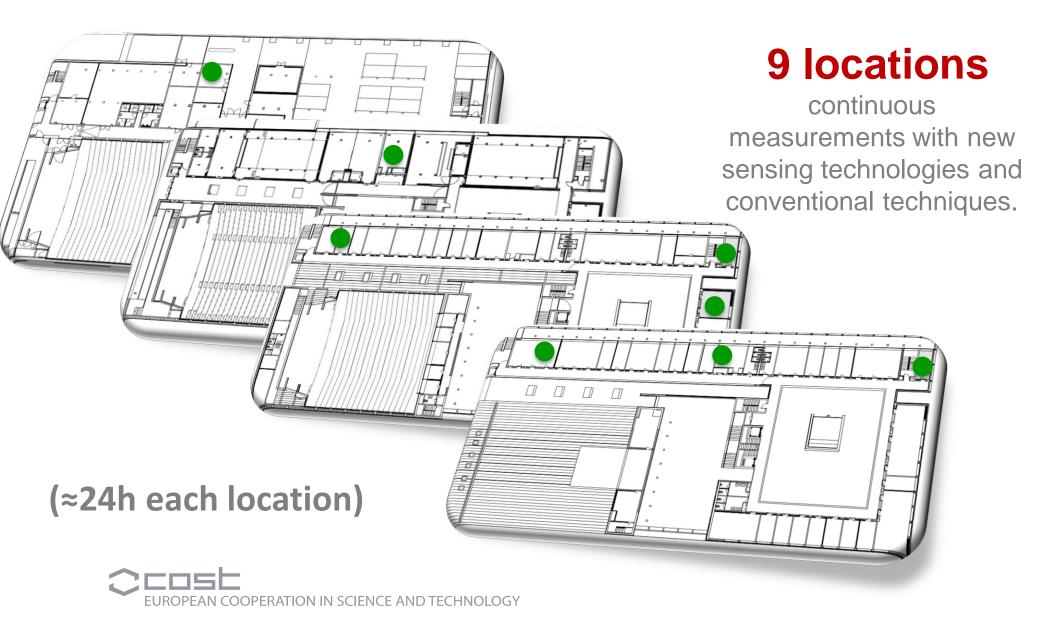
The raising of awareness in indoor air quality issues leads to other potential utilizations of monitoring data

Qualitative or Quantitative data?

New sensing technologies for air pollution control

Low-cost sensing technologies

Their use can be particularly valuable to have highly spatially and temporally resolved air quality data and to improve exposure assessment


The raising of awareness in indoor air quality issues ly to other potential utilization monitoring data Selectivity? interferents?

Qualitative or Quantitative data?

SENSOR

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

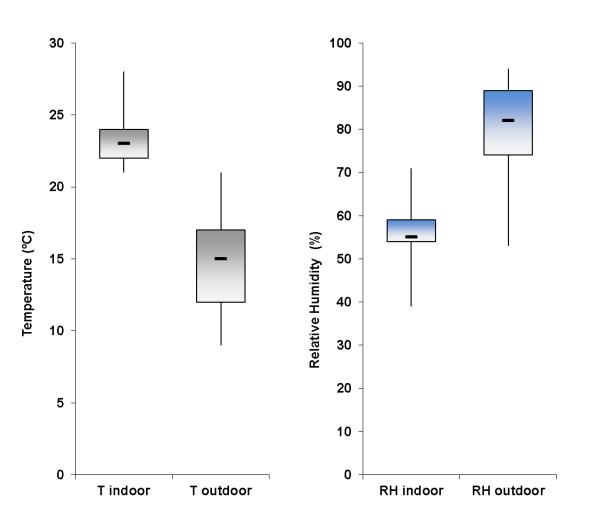
Case study - PUBLIC BUILDING

Case study - PUBLIC BUILDING

Pollutant	Sensor			
PM10 PM2.5	light scattering photometer/ gravimetric	Thermo pDR1200		
CO₂ - Carbon dioxide	NDIR - nondispersive infrared sensor	Graywolf		
VOC - Volatile Organic compounds	PID - Photo Ionization Detector			
CO - Carbon Monoxide	Electrochemical sensor			
O 3 - Ozone	361301			
Bacteria and fungi	Impaction principle	MERCK MAS 10		

IAQ assessment with **conventional sensors/techniques**

Preliminary analysis for PM, CO₂ and VOC data

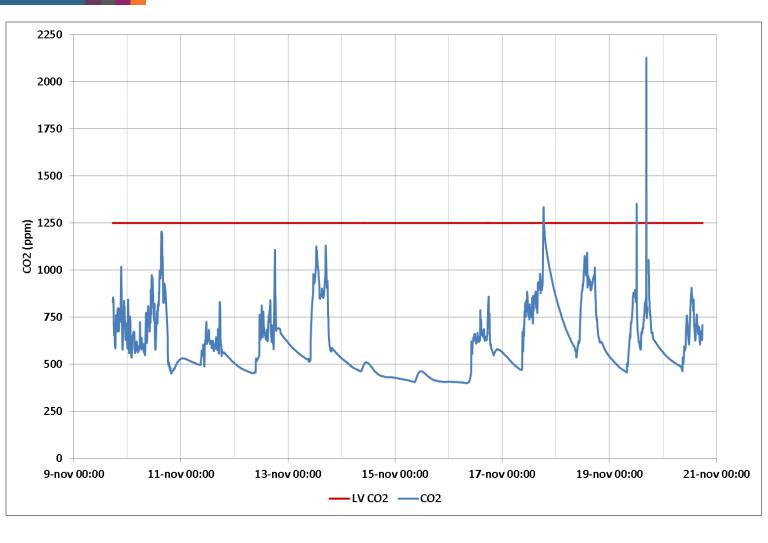

Case study - PUBLIC BUILDING

Pollutant	Sensor	
PM10	light	
PM2.5	scattering method	PPD42NS
CO₂ - Carbon dioxide	NDIR - nondispersive infrared sensor	SensAir Engine K30
CO - Carbon Monoxide	Electrochemical sensor	Nemoto NAP-505R
VOC - Volatile Organic compounds O ₃ - Ozone	<u>MOS sensors</u> Metal Oxide Semiconductor	MiCS5524 MiCS2614 MiCS2714
NO₂ - nitrogen dioxide	sensors	

Parallel measurement with low cost sensors

Environmental conditions

Relatively stable conditions for indoor temperature and relative humidity.

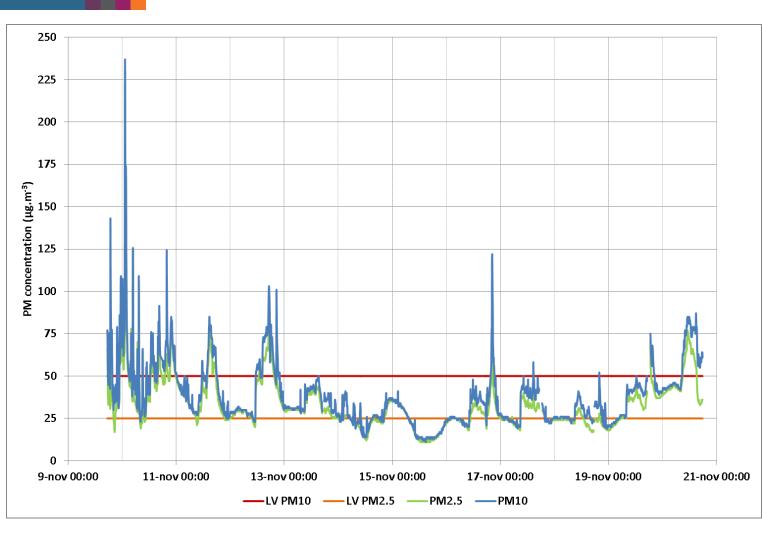

Average during measurement campaign:

T_{indoor}=23 °C RH_{indoor}=55%

T_{outdoor}=15 °C RH_{outdoor}=82%

Results – CO₂

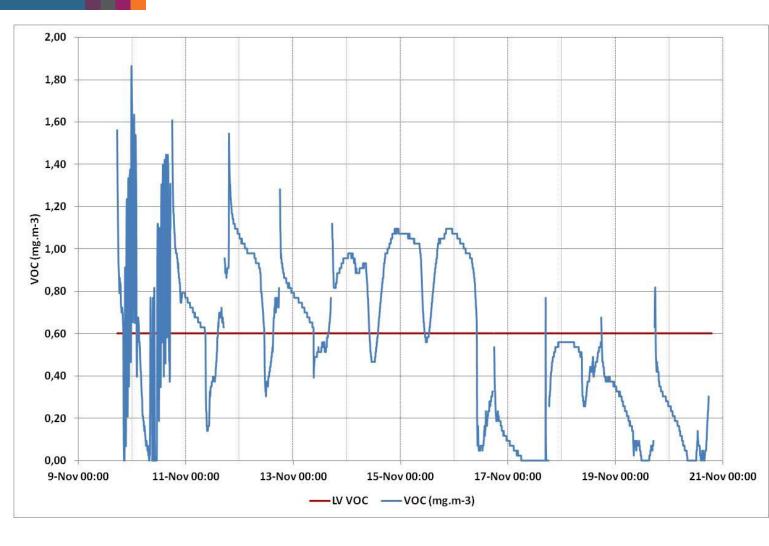
HVAC system off (natural ventilation).


Offices with 1 to 6 persons.

CO₂ (8h average) **bellow the limit value** (1250 ppm) in all locations.

Correspondence with time-activity pattern.

Results - PM10 and PM2.5

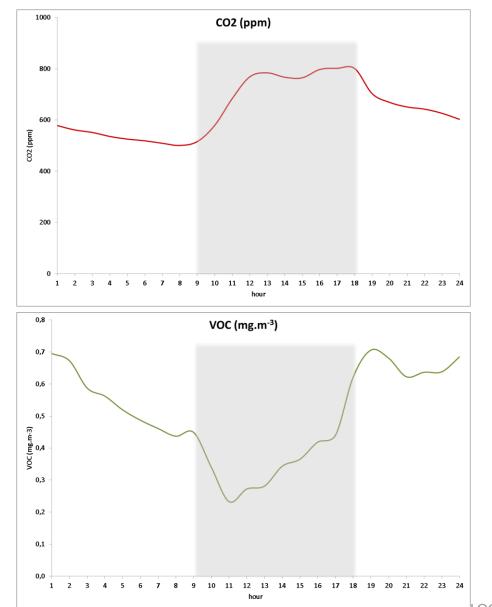


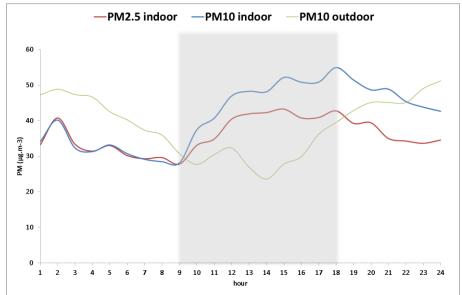
PM10 (8h average) **above the limit value** in 5 locations.

PM2.5 (8h average) **above the limit value** in 8 locations.

Exceedances related with indoor sources (particle resuspension, cleaning activities,...), proximity to car garage and tobacco smoke, and outdoor air.

Results - VOC

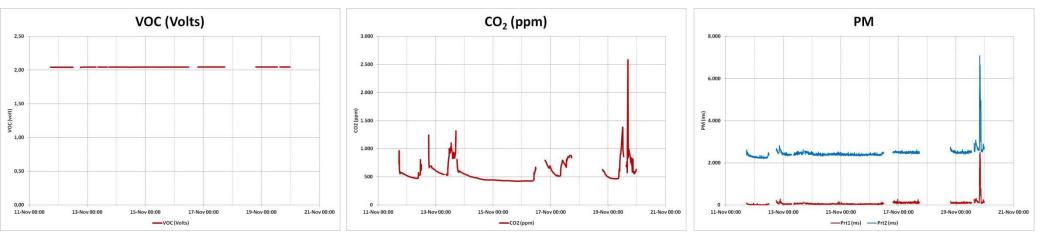

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY


VOC (8h average) above the limit value in 1 location.

Concentrations related with indoor sources (occupants, air fresheners, cleaning activities, proximity to car garage and tobacco smoke).

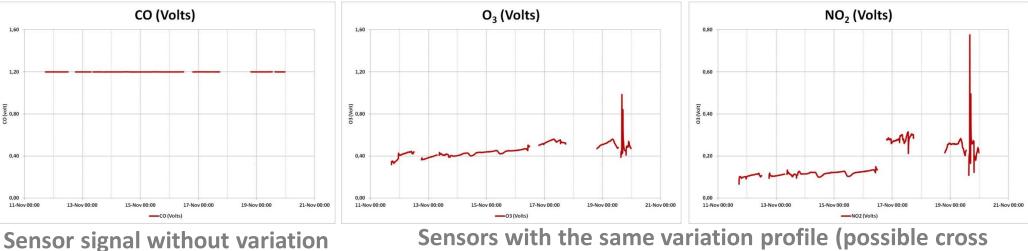
Daily profile with higher concentrations during the night. Decrease in concentrations after opening / occupation of spaces at the beginning of the day.

Results – average daily profile



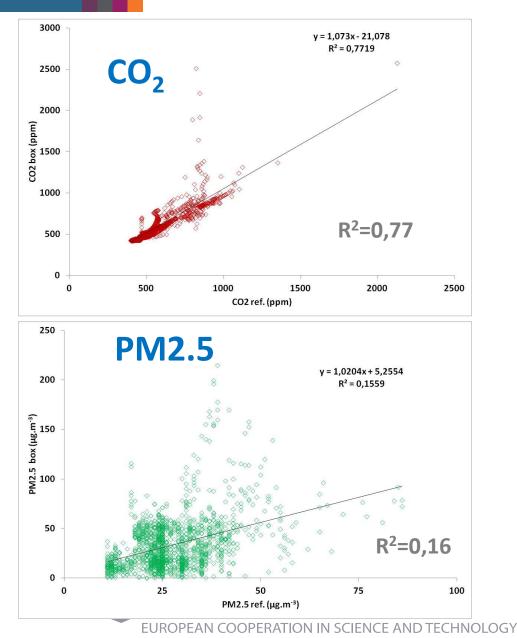
CO₂ - correlation with building occupancy. Relatively high average baseline (low ventilation).

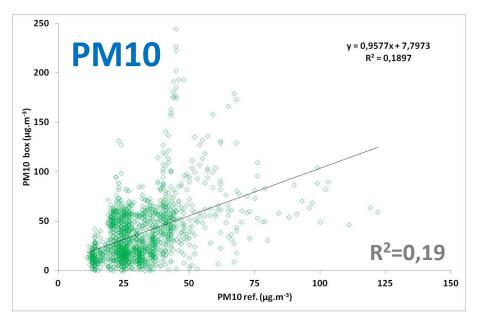
VOC - higher concentrations during the night, after cleaning the spaces. Decrease after opening at the beginning of the day.


PM - different indoor and outdoor profile. Importance of indoor sources for the PM concentration.

Results - Raw data (low cost sensor)

Sensor signal without variation


Sensors signal with variation and possible correlation with conventional equipment and time-activity pattern



Sensors with the same variation profile (possible cross sensitivity) R²=0,8

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Results – correlations

CO₂ - strong correlation between microsensors and reference equipment (R²=0,77)

PM10/PM2.5 - poor correlation between micro-sensors and reference equipment (R²=0,2)

VOC – sensor with no data/correlation (possible saturation)

CONCLUSIONS

- Confirmation of the importance of some sources with relevant contribution to indoor air quality such as:
 - materials, cleaning, indoor activities;
 - strategies of **ventilation**;
 - tobacco smoke / car garage;
 - and **ambient air quality**.
- Good correlation in part of the measurements, between microsensors and reference methods (CO₂).
- Result: CO₂ levels should be considered with precaution as an indicator of indoor air quality.
- An intervention in indoor air quality based on the concentration of CO₂ disregard possible exceedance for PM10 and VOC.

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

CONCLUSIONS

- The raise of awareness on IAQ issues combined with the development of low-cost sensing technologies allowed to look to other potential utilizations of monitoring data.
- The real-time collected data can be used to **inform occupants** in addition to security or HVAC control purposes.
- The use of new sensing technologies for IAQ assessment could be seen as a valuable contribution to create healthy and comfortable living environments!

CONCLUSIONS and CHALLENGES

- IAQ constitutes a complex case for risk assessment and management due to a wide variety of pollutants, exposure levels, different possible health outcomes.
- Need for more research in the effects due to combined exposure to indoor air pollutants and need of unbiased methods for their evaluation, including development of validated monitoring and modelling tools.
- Climate change and rise of energy costs may have important effects in indoor air quality (e.g. extreme weather conditions, need to additional thermal insulation and decreased ventilation).

