European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir* COST Action TD1105

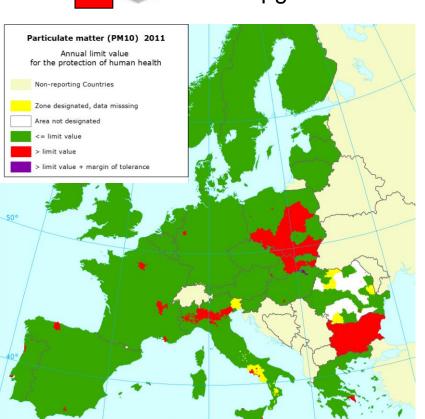
3rd International Workshop *EuNetAir* on New Trends and Challenges for Air Quality Control

University of Latvia - Faculty of Geography and Earth Sciences Riga, Latvia, 26 - 27 March 2015

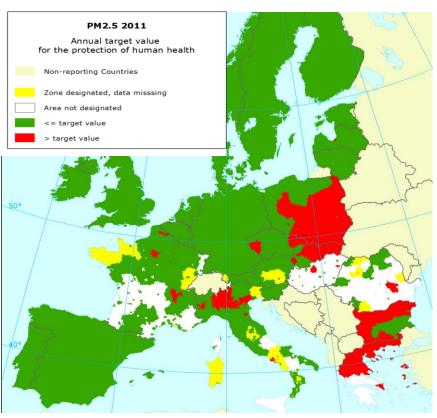
EVALUATING THE PERFORMANCE OF WRF-CMAQ MODELS IN BULGARIA BY MEANS OF THE DELTA TOOL

- Presenter's Name: prof. Dimiter Syrakov
- Function in the Action: **WG3.2 member**
- National Institute of Meteorology and Hydrology
- · 66, Tzarigradsko shaussee Bulvd.
- Sofia 1784, BULGARIA

Our motivation


- 1. AQ status persistent problems in Bulgaria, related to PM10 and PM2.5
- 2. Lack of model evaluation on yearly basis for simulations over the whole country
- 3. Harmonization of model performance evaluation with EU initiatives related to the EU AQD: FAIRMODE → DELTA Tool

fairmode.jrc.ec.europa.eu



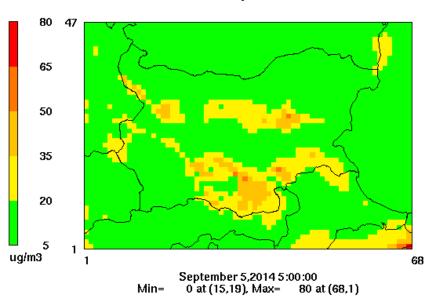
AQ status – 2011 PM10 & PM2.5 annual limit values in 2011

PM10 > 40 μ g/m³

Main purpose of this study

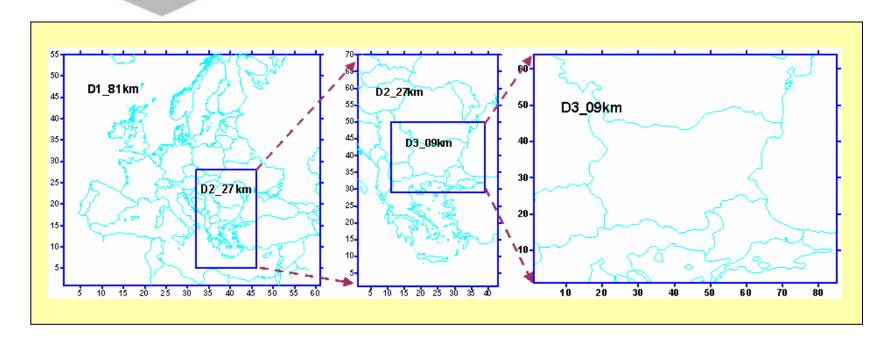
- A first check of WRF-CMAQ performance
 For one year 2013
 Focus on daily PM10, daily max 8h-mean O3
 and hourly NO2 EU AQD key pollutants
- Highlight model weakness and strengths, outline more detailed evaluation milestones
- Define next steps for model application and improvement

WRF - CMAQ model system at NIMH


Surface PM10

dx = dy = 9 km.

BG Chemical Weather Forecast system


5 domains - 81km 27km, 9km, [3km, 1km over Sofia]
Operational runs for +72h forecast

Surface maps: SO₂, NO₂, O₃, PM₁₀

http://info.meteo.bg/cw2.2

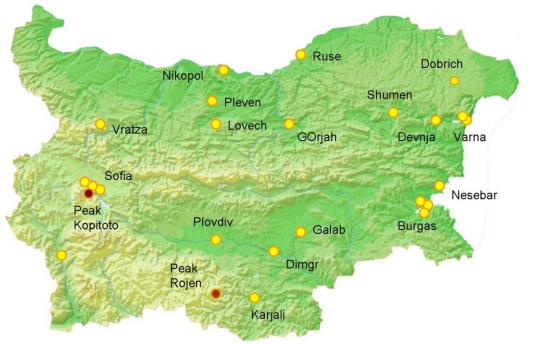
WRF – CMAQ domains

Nesting: D1: 81 km to D3 (BG): 9km

- Driven by NCEP/GFS free data
- Analysis nudging only on D1
- 27 vertical levels

CMAQ v.4.6

- Boundary conditions climatic for D1
- CB-4 chemical mechanism
- 14 vertical levels


Emissions

- Emission processors AEmis, PEmis
- TNO emission inventory 2005 for D1 and D2
- National inventory for D3
- Temporal allocation based on TNO profiles
- Speciation profiles based on US-EPA approach adapted for EU
- SMOKE model partially used: for biogenic emissions and their merging with Area (AS) and Large Point Source (LPS) emissions in a single input file for CMAQ

Observational data set 2013

No. of stations	NO ₂	O ₃	PM ₁₀
Background (BG)	21	17	23
BG with data >75%	18	16	18

Provided by the BG Executive Environment Agency

- Urban, suburb
- Rural mountain1750 m and 1325m

DELTA TOOL (JRC)

- "Modelled observed" data pairs at surface level (meteo and pollutants)
- "Exploration" and "Benchmarking"
 (EU_AQD) mode (O3, PM10, NO2) 1
 calendar year
- Performance criteria (MPC): level of accuracy considered to be acceptable for regulatory applications
- MPC take into account observation uncertainty

DELTA: check data integrity module

- Look at the data before any analysis, simple statistics
- Some "outliers" identified, mainly in PM2.5
- Aware of obs. data availability (>75%)

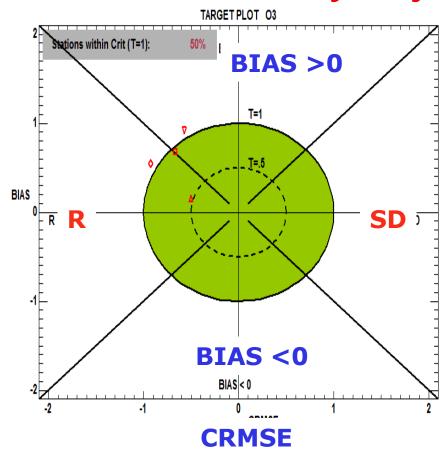
Model Performance Criteria (MPC)

Model Quality Objective: RMSE/2U = T < 1

$$|NMB| < \frac{2U}{\overline{O}}$$

$$(MPC_{NMB})$$

$$|NMSD| < \frac{2U}{\sigma_O}$$

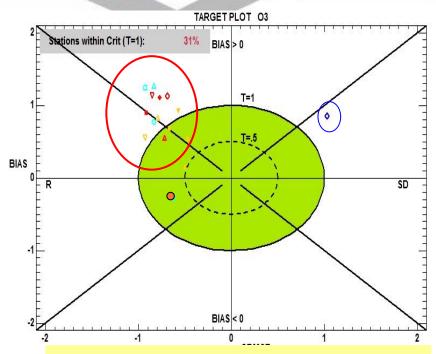

$$(MPC_{NMSD})$$

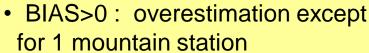
$$R > 1 - 2\left(\frac{U}{\sigma_O}\right)^2$$

$$(MPC_R)$$

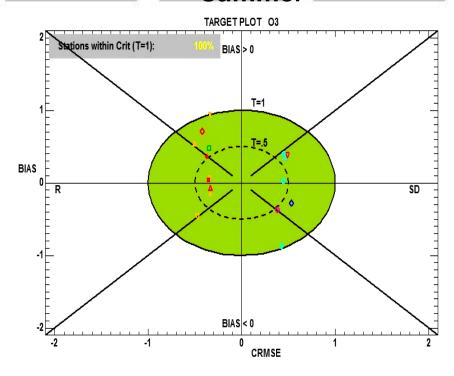
TARGET diagram

Model Quality Objective: RMSE/2U = T = 1

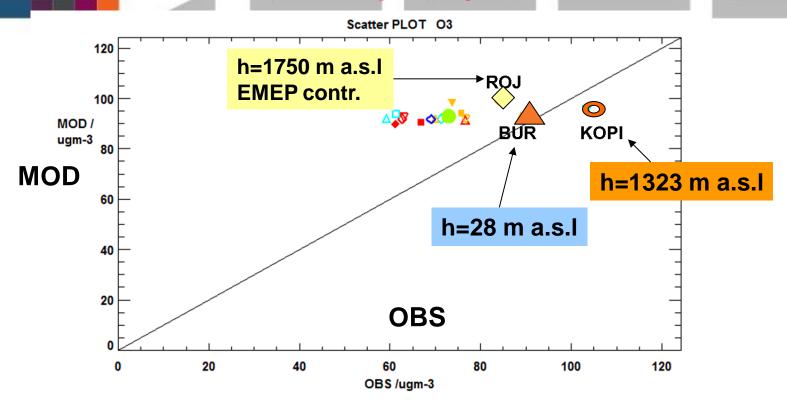



- •RMSE/2U ≤ 0.5 : model results are on average within the range of the observation uncertainty for that station any attempt to improve the model performance further is unhelpful.
- •0.5<RMSE/2U≤1: RMSE on average > the range of U but the model might still be closer to the "true value" (i.e. the perfect measurement) than observations.
- •RMSE/2U>1 observations are closer to the "true value" than the model results.

O3 daily max 8h mean



summer

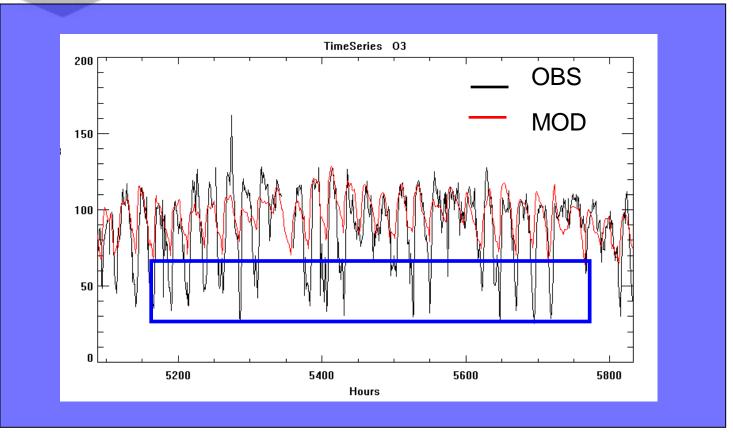

- error is dominated by lack of R
- •31% fulfill the target criteria

- both over-/ under-estimation
- •100% fulfill the target criteria

O3 daily max 8h mean (Cont.)

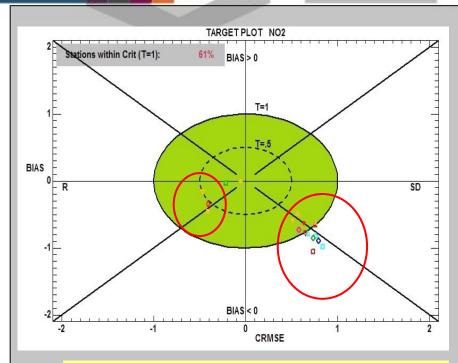
Scatter plot - year

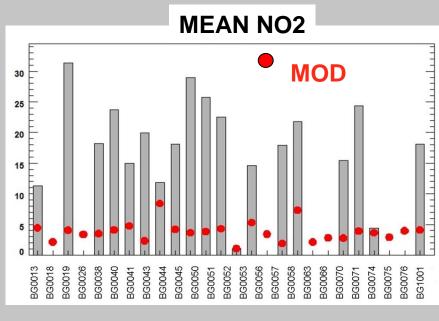
MEAN OBS: 73 μgm-3


MEAN MOD: 93 μgm-3

Highest values: rural/mountains sites + Coastal site (Burgas)

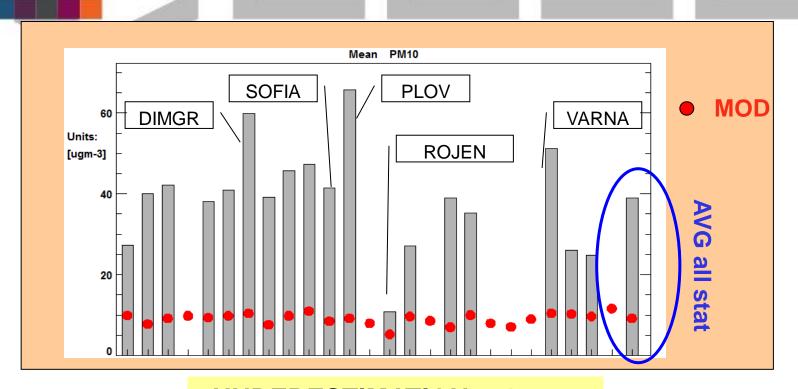
O3 hourly - time series


BG0063 (Burgas) August



The model overestimates night-time values

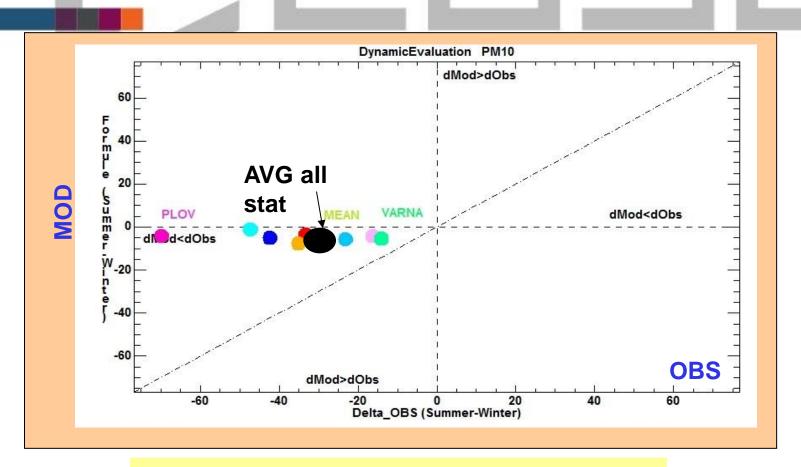
NO2 hourly



- BIAS<0: underestimation
- Lack of amplitude
- Best East and SE st.
- Worst Sofia, PLOV, PLE
- •61% fulfill the target criteria

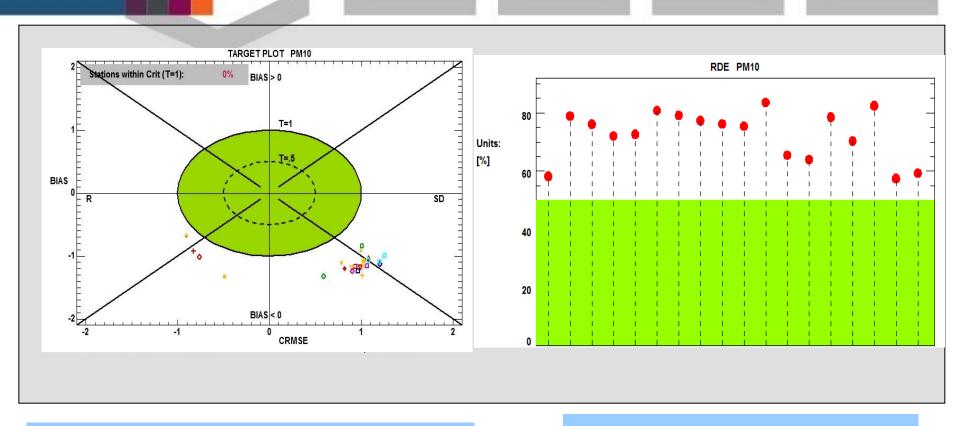
Mean OBS. 18 μgm⁻³ (EU LV (year) 40μgm⁻³)

Mean MOD. 4 µgm-3


PM10 mean obs. & mod.

- UNDERESTIMATION 4 x
- MEAN OBS 39 ugm-3
- MEAN MOD 9 ugm-3
- Uniform model values

PM10 dynamic D(summer-winter)



•OBS: d(SUM-WIN): -15 to -70 ugm-3

•MOD: -5 ugm-3

PM10: Target and Relative Directive Error

Target criteria - not satisfied

RDE of PM10 > 50%: MQO not satisfied

Some statistics vs. MPC (Thunis et al. 2012, text in blue)

	FA2	R	NMB	RMSE	NMSD	Target %
O_3	85%	0.55	30%	30	-48%	31%
		0.51 urb	41% urb	µg/m3	±100% urb	EO AQD requr.>90%
NO_2	21%	0.24	-68%	20	-69%	61%
		0.29 urb	79% urb	µg/m3	±117% urb	
PM ₁₀	14%	0.36	-74%	40	-78%	0%
		0.33 urb	65% urb	µg/m3	± 116% urb	

 $\rm O_3$ - comparable statistics to MPC $\rm NO_2$ and especially $\rm PM_{10}$ - more work is needed for improvement of model performance

EUROPERN ESF provides the COST Office CONTROL Through a European Commission contract

O₃: better than NO₂ and PM₁₀ overestimation (night-time) errors related to lack of R

NO₂: underestimated, lack in emissions at local level

 PM_{10} : underestimated, correlation comparable to other studies

Problems:

- data availability and solutions representativeness
- No urban "effects" in the model
- emissions at local level and emission input as whole

DELTA - useful and fast tool for diagnostic of model performance

