European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir* 

#### **COST Action TD1105**

3<sup>rd</sup> International Workshop *EuNetAir* on *New Trends and Challenges for Air Quality Control* University of Latvia - Faculty of Geography and Earth Sciences Riga, Latvia, 26 - 27 March 2015

#### THE MOSSCLONE FP7 PROJECT: MONITORING AIR QUALITY USING MOSS AS PASSIVE SENSOR



#### J. Ángel Fernández

MossClone Project Coordinator

jangel.fernandez@usc.es

University of Santiago de Compostela / Spain

## Air pollution and health

- Air pollution affects human health. According to the World Health Organization each year 2 million of deaths are related to atmospheric contamination.
- Several EU Directives aimed at reducing pollution to levels which minimize its harmful effects.

  - 2004/107: As, Cd, Hg, Ni and PAHs



## **Air pollution monitoring**

- The levels of air pollutants in urban and industrial environments are monitored by automated stations.
  - □ Technical complexity and high costs
    → mainly gases and particles are controlled.
  - Lack of data about many heavy metals, metalloids or PAHs.
  - Monitoring stations are installed depending on number of inhabitants.

Currently there are no data on many airborne pollutants for much of the EU territory.







## **Air pollution biomonitoring**

- New tools are needed that combine robustness and low costs.
- The use of biomonitoring is a suitable alternative and terrestrial mosses are the best choice.

#### Why mosses?

- Lack of a root system.
- High surface/mass ratio.
- Good ion exchange capacity.
- Scarce seasonality.
- Absence of protection tissues.



## High efficiency in loading particulate and gaseous organic and inorganic pollutants.



## Air pollution biomonitoring: moss-bags

- In urban and industrial environments is difficult to find native mosses.
- Mosses are suitable to be transplanted in so-called 'moss-bags'.
- Why moss-bags?
  - □ The material can be exposed in *ad hoc* sampling grids.
  - It is possible to calculate enrichment rates.
  - □ The exposure period is known.
  - Surveys can be repeated on time.









## **Moss-bags technique**

- Moss-bags are made from naturally growing mosses collected from unpolluted areas.
- Some problems can arise when preparing moss-bags:
  - The environmental impact due to sampling native mosses.
  - There may be changes in their availability in the field.
  - □ The inherent natural variability of their body concentrations  $\rightarrow$  effect on the estimates of the enrichment after exposure.



## **Moss-bags technique**

Solution:

Culture moss in laboratory ensuring homogeneity of the material and its continuous availability.

- $\hfill \label{eq:solution}$  Isolating a clone  $\rightarrow$  high level of standardization.
- Development of a new biotechnological tool for pollution control.
- New material for simultaneously controlling of pollutants on the same matrix.







## **Moss-bags technique**

- Additional problem when using moss-bags: lack of standardized protocols and wellestablished methodology.
  - Most suitable moss species.
  - Material for making bags.
  - Shape and size of bags.
  - Exposure height
  - Exposure period.









#### The MossClone project

"Creating and testing a method for controlling the air quality based on a new biotechnological tool. Use of a devitalized moss clone as passive contaminant sensor"

|   | Call:         | FP7-ENV-2011-ECO-INNOVATION-TwoStage |          |                          |  |  |  |  |  |  |  |  |  |  |
|---|---------------|--------------------------------------|----------|--------------------------|--|--|--|--|--|--|--|--|--|--|
|   | Period:       | 01/04/2012 – 3                       | 1/03/201 | 15                       |  |  |  |  |  |  |  |  |  |  |
|   | Total budget: | 4.485.293 €                          | (UE co   | ntribution: 3.492.220 €) |  |  |  |  |  |  |  |  |  |  |
|   |               | 1.499.005 €                          | (42.9%   | )Personnel               |  |  |  |  |  |  |  |  |  |  |
|   |               | 77.000€                              | (2%)     | Subcontracts             |  |  |  |  |  |  |  |  |  |  |
|   |               | 734.119€                             | (21%)    | Other direct costs       |  |  |  |  |  |  |  |  |  |  |
| ( | elone 🍾       | 1.181.899€                           | (34%)    | Indirect costs           |  |  |  |  |  |  |  |  |  |  |
|   | DSS           | 211.760 €                            | (6%)     | Management               |  |  |  |  |  |  |  |  |  |  |



## The MossClone consortium

- University of Santiago de Compostela (Spain). Coordinator.
- AMRA (Italy)
- University of Freiburg (Germany)
- University of A Coruña (Spain)
- CNRS-University Paul Sabatier (France)
- Biovia (SME, Spain)
- ORION (SME, Italy)
- T.E. Laboratories (SME, Ireland)
- Tecnoambiente (SME, Spain)
- Maderas Ornanda (SME, Spain)





tecnoambiente



Academic/public institutions: Small-Medium Enterprises: 63% of total budget 37%

**\_\_ L\_\_] I\_\_\_ L\_\_\_** JROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY



#### **Objectives of the MossClone project**

- 1. Selection of moss species on the basis of existing knowledge about their use as bio-monitor, and their geographical and ecological distributions. Selection is further directed based on sampling and study of physical-chemical characteristics for the species selected based on the existing knowledge.
- **2. Creating a pilot bioreactor for the cultivation** of the selected species. Based on these results and those of objective 1, one moss species will be selected for the isolation and culturing of moss clones.
- **3.** Characterization of the selected moss clone: molecular characterization (DNA finger printing, etc.), chemical composition (multi-elemental analysis), and physical and physical-chemical characterization (e.g. surface stability constants, specific surface area, maximal surface adsorption capacity, physical heterogeneity, porosity, surface charge, etc.).



#### **Objectives of the MossClone project**

- **4. Scaling up moss clone cultivation** from pilot bioreactor scale to large-scale clone production.
- 5. Design and standardization of moss-bags through the selection of type of mesh and shape for bags, and determination of the ideal ratio weight of moss to size of bag.
- 6. Methodological standardization for exposure conditions: effect of height and exposure time on exposure.
- 7. Moss-bags vs. current state-of-the-art methods for air pollution monitoring: comparisons with pollutants in bulk deposition, with particle samplers, with gaseous samplers, and with pollutant passive samplers.
- 8. To develop a method and perform an initial validation of its usefulness for the detection of atmospheric small scale pollution focus using moss clone bags.



## **Project activities and interconnectivities**

#### WP1-Management

#### WP2-Clone cultivation & characterization

| NΡ | Task                                                    | 1/ | 2 3 | 4 | 5  | 6 | 7 8 | 9 | 10 | 11 | 12 | 13 | 14 1: | 5 16 | 5 17 | 18 | 19 | 20  | 21 | 22 | 23 2 | 4 25 | 26 | 27 | 28 | 29 | 30 3 | 31 3 | 32 3 | 3 3/ | 1 35 | 36 |
|----|---------------------------------------------------------|----|-----|---|----|---|-----|---|----|----|----|----|-------|------|------|----|----|-----|----|----|------|------|----|----|----|----|------|------|------|------|------|----|
| 1  | Management                                              |    |     |   |    |   |     |   |    |    |    |    |       |      |      |    |    |     |    |    |      |      |    |    |    |    |      |      |      |      |      |    |
| 2  | 2.1. Literature review for species selection            |    | •   |   |    |   |     |   |    |    |    |    |       |      |      |    |    |     |    |    |      |      |    |    |    |    |      |      |      |      |      |    |
|    | 2.2. Species selection                                  |    | 40  |   | •  |   |     |   |    |    |    |    |       |      |      |    |    |     |    |    |      |      |    |    |    |    |      |      |      |      |      |    |
|    | 2.3. Cultivation moss clone                             |    |     |   |    | • |     |   |    |    |    |    | *     |      |      |    |    |     |    |    |      |      |    |    |    |    |      |      |      |      |      |    |
|    | 2.4. Molecular characterization 🦰                       |    |     |   |    |   |     |   |    |    |    |    | +•    |      |      |    |    |     |    |    |      |      |    |    |    |    |      |      |      |      |      |    |
|    | 2.5. Analytical optimization                            |    |     |   | ΙH |   |     |   |    |    |    | •  |       |      |      |    |    |     |    |    |      |      |    |    |    |    |      |      |      |      |      |    |
|    | 2.6. Multi-element characterization                     |    |     |   |    |   |     |   |    |    |    |    |       |      |      |    |    |     |    |    |      |      |    |    |    |    |      |      |      |      |      |    |
|    | 2.7. Physical-chemical characterization                 |    |     |   |    |   |     |   |    |    |    |    |       |      |      |    |    |     |    |    |      |      |    |    |    |    |      |      |      |      |      |    |
| 3  | 3.1. Moss-bags preparation                              |    |     |   | 4  | • |     |   |    |    |    |    |       |      |      |    |    |     |    |    |      |      |    |    |    |    |      |      |      | _    |      |    |
|    | 3.2. Stand. essays: mesh effect                         |    |     |   |    | H |     |   |    |    |    |    |       |      |      |    | •  | ן ר |    |    |      |      |    |    |    |    |      |      |      | _    |      |    |
|    | 3.3. Stand.essays: shape, size and moss weight effect   |    |     |   |    | H |     |   |    |    |    |    |       |      |      |    | •  | -   |    |    |      |      |    |    |    |    |      |      |      | _    |      |    |
|    | 3.4. Stand. essays: height effect                       |    |     |   |    | H |     |   |    |    |    |    |       |      |      |    | •  |     |    |    |      |      |    |    |    |    |      |      |      |      |      |    |
|    | 3.5. Stand. essays: exposure time effect                |    |     |   |    | 4 | •   |   |    |    |    |    |       |      |      |    | •  |     |    |    |      |      |    |    |    |    |      |      |      |      |      |    |
|    | 3.6. Scaling up to large-scale clone production         |    |     |   |    |   |     |   |    |    |    |    |       |      |      |    |    |     |    |    |      |      |    |    |    |    |      |      |      |      |      |    |
|    | 3.7. Clone moss-bags preparation                        |    |     |   |    |   |     |   |    |    |    |    |       |      |      |    |    | •   | Ŧ  |    |      |      |    |    |    |    |      |      |      |      |      |    |
| 4  | 4.1. Standard bags vs. bulk deposition                  |    |     |   |    |   |     |   |    |    |    |    |       |      |      |    |    |     | •  | -  |      |      | _  |    |    |    |      |      |      | ⊥    |      |    |
|    | 4.2. Cover bags vs. particles samplers                  |    |     |   |    |   |     |   |    |    |    |    |       |      |      |    |    |     | •  | -  |      |      | _  |    |    |    |      |      |      | ⊥    |      |    |
|    | 4.3. Cover bags with diffuser vs. gaseous samplers      |    |     |   |    |   |     |   |    |    |    |    |       |      |      |    |    |     | •  |    |      |      |    |    |    |    |      |      |      | ⊥    |      |    |
|    | 4.4. Fitting bags to small-scale pollution focus method |    |     |   |    |   |     |   |    |    |    |    |       |      |      |    |    |     |    |    |      |      |    |    |    | +  |      |      |      | ⊥    |      |    |
|    | 4.4.1. Exposition of clone bags                         |    |     |   |    |   |     |   |    |    |    |    |       |      |      |    |    |     |    |    |      |      |    |    |    | •  | •    | •    | ¥    | ╨    |      |    |
|    | 4.4.2. Obtain reference pollutant distributions         |    |     |   |    |   |     |   |    |    |    |    |       |      |      |    |    |     |    |    |      |      | 1  |    |    |    |      |      | •    | ▙    |      |    |
|    | 4.4.3. Testing method                                   |    |     |   |    |   |     |   |    |    |    |    |       |      |      |    |    |     | _  |    |      |      |    |    |    |    |      |      |      |      |      |    |
| 5  | Dissemination and protection of results                 |    |     |   |    |   |     |   |    |    |    |    |       |      |      |    |    |     |    |    |      |      |    |    |    |    |      |      |      |      |      |    |
|    |                                                         |    |     |   |    |   |     |   |    |    |    |    |       |      |      |    |    |     |    |    |      |      |    |    |    | -  | -    |      |      |      |      |    |

#### WP3-Tool development

# WP5-Exploitation and dissemination

#### WP4-Detectors



#### **Experimental set-up**





#### Instruments





#### **Bulk deposition vs. moss clone: PAHs**



EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

#### Passive sorbent vs. moss clone: Hg









## **CONCLUSIONS**

- A moss clone has been isolated and is growing under laboratory conditions.
- The clone has been fully characterized (i.e. genetically, chemical and physic-chemically).
- The moss-bag technique has been optimized: shape, weight/volume ratio, height and exposure time.
- Preliminary results for PAHs and some metals show that concentrations in moss clone bags reflect clearly changes in atmospheric pollution.
- Higher accumulation of Hg in clone bags than commercial sorbents, without saturation and fully operative outdoor and indoor.





