European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - EuNetAir

 COST Action TD1105
$3^{\text {rd }}$ International Workshop EuNetAir on

New Trends and Challenges for Air Quality Control
University of Latvia - Faculty of Geography and Earth Sciences
Riga, Latvia, 26-27 March 2015

KERNEL NETWORKS FOR LEARNING FROM SENSOR DATA

Roman Neruda, P. Vidnerová V. Kůrková MC Substitute, roman@cs.cas.cz
Institute of Computer Science, Academy of Sciences
of the Czech Republic, Prague

Outline

- Kernel networks
- Theoretical properties
- Composite and product kernels
- Learning algorithms
- Beyond parameter setting
- Evolutionary computing
- Data
- Results
- Discussion
- Challenges

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Learning from data

- Problem:

Given set of data samples:

$$
\left\{\left(x_{i}, y_{i}\right) \in R^{d} x R ; i=1, \ldots, N\right\}
$$

Recover the unknown function $f(\mathbf{x})$ $f: R^{d}->R$
(or find a best approximation)

- Supervised learning
- Regression
- Classification
- Prediction

Regularization theory

- Empirical risk minimization:
- Find a solution f that minimizes $H(f)=\Sigma\left(f\left(\boldsymbol{x}_{i}\right)-y_{i}\right)^{2},(i=1 \ldots N)$
- Generally ill-posed problem
- Choose a solution according to a priori knowledge
- (what should f look like? - e.g. smooth, small oscilations,)
- Regularization:
- Add a stabilizer $A(f)$:
- $H(f)=\Sigma\left(f\left(\boldsymbol{x}_{i}\right)-y_{i}\right)^{2}+\gamma A(f),,(i=1 \ldots N)$
- $A(f)$ - based on Fourier transform divided by a kernel function
- $A(f)$ - defined by a norm on reproducing kernel Hilbert space (RKHS)
- $f(x)=\Sigma w_{i} K\left(\boldsymbol{x}-\boldsymbol{x}_{i}\right)$, for positive K, where $(\gamma \boldsymbol{I}-\boldsymbol{K}) \boldsymbol{w}=\boldsymbol{y}$

Regularization networks

- f can be represented by a feed-forward network with one hidden layer of units computing K
- Function K is called basis or kernel function
- choice of K represents our knowledge or assumption about the problem
- choice of K is crucial for the generalization performance of the network

Regularization networks

- Basic Algorithm:
- 1. set the centers of kernel functions to the data points
- 2. compute the output weights by solving linear system

$$
(y I+K) \boldsymbol{w}=\boldsymbol{y}
$$

- Pros:
- easy, fast
- Cons:
- choice of y and K (and its parameters) is crucial for performance
- ... and it is data dependent: (no-free-lunch theorem)

Inverse Multi-quadratic

Sigmoid

Thin Plate Spline

Multi-quadratic

Sum (combination) kernels

- Aronszajn theory: RKHS is closed w.r.t. linear combination

$$
K(x, y)=\alpha K_{1}(x, y)+\beta K_{2}(x, y)
$$

- Each unit is composed of a two linearly combined kernels
- More parameters to set
- Possiblity to combine different kernel function
- Possibility to retain detailed approximation while having good generalization

Product kernels

- Aronzsajn: product of two RKHS is in RKHS

$$
K\left(x_{1} x_{2}, y_{1} y_{2}\right)=K_{1}\left(x_{1}, y_{1}\right) \cdot K_{2}\left(x_{2}, y_{2}\right)
$$

- Each unit has two kernel functions operating on different subsets of inputs
- Heterogenous data:
- Different properties of attributes
- Processed by different kernels
- Even more parameters (input split)

Simple learning

1. Expert knows/miracle (statistics) happens:

- Type of kernel function, pairs for combinations and products
- The regularization parameter y
- For combination kernels, the parameters of combination
- For product kernels, the input split into two subsets

2. Then, solve a linear system

OR

1. Use tailored search algorithms to set the metaparameters

- Such as evolutionary algorithm

2. Combine it with the linear part of the algorithm

Evolutionary learning

Evolutionary learning

- Population based search heuristics
- Prone to local optima
- Suitable for search of heterogeneous spaces/problems
- Does not require additional information such as gradients
- Encoding of metaparameters of kernel networks
- Floating point parameters together with binary input splits and integer indices of kernel types
- Standard operations of arithmetic crossover for floats, one point crossover for discrete variables, and mutations
- Selection based on cross-validated performance of the fullytrained model

EXPERIMENTS

Data

- The dataset contain tens of thousands measurements of gas multi-sensor MOX array devices recording concentrations of several gas pollutants.
- Collocated with a conventional air pollution monitoring station that provides labels for the data.
- The data are recorded in 1 hour intervals.
- S. De Vito et al.

Table 1. Overview of data sets sizes.

Task	train set test set			Task	train set test set		
sparse CO	1224	6120		CO i1-5	1469	5875	
sparse NO2	1233	6160		NO2 i1-5	1479	5914	
sparse NOx	1233	6163		NOx i1-5	1480	5916	

Preliminary experiments - overview

Crossvalidation errors											
Gaussian kernel								Product kernels		Sum kernels	
Task	$E_{\text {avg }}$	stddev	$E_{\text {avg }}$	stddev	$E_{\text {avg }}$	stddev					
CO	0.152	0.000	$\mathbf{0 . 1 4 8}$	0.002	0.152	0.003					
NO2	0.429	0.003	$\mathbf{0 . 4 0 7}$	0.009	0.434	0.012					
NOx	0.227	0.000	$\mathbf{0 . 2 0 7}$	0.006	0.229	0.005					

Training errors

	Gaussian kernel		Product kernels		Sum kernels	
Task	$E_{\text {ava }}$	stddev	$E_{\text {avq }}$	stddev	$E_{\text {avq }}$	stddev
CO	0.132	0.002	$\mathbf{0 . 1 2 3}$	0.005	0.128	0.010
NO2	0.308	0.002	$\mathbf{0 . 2 7 7}$	0.025	0.312	0.003
NOx	0.139	0.001	$\mathbf{0 . 1 3 5}$	0.011	0.139	0.002

Testing errors

	Gaussian kernel		Product kernels		Sum kernels	
Task	$E_{\text {ava }}$	stddev	$E_{\text {avq }}$	stddev	$E_{\text {ava }}$	stddev
CO	0.136	0.001	$\mathbf{0 . 1 3 4}$	0.002	0.138	0.006
NO2	$\mathbf{0 . 3 3 4}$	0.002	0.343	0.011	0.338	0.004
NOx	$\mathbf{0 . 1 5 8}$	0.001	$\mathbf{0 . 1 5 8}$	0.008	0.160	0.005

Preliminary experiments - CO

Preliminary experiments - NO2

Preliminary experiments－NOx

Experiment 2 - Training errors

Training errors								
Task	$E_{\text {avg }}$	stddev	min	max	Eavg	stddev	min	max
CO-i1	0.050	0.000	0.050	0.050	0.051	0.002	0.049	0.055
CO-i2	0.049	0.000	0.049	0.049	0.046	0.002	0.043	. 050
CO-i3	0.054	0.000	0.053	0.054	0.056	0.003	0.054	0.065
CO-i4	0.333	0.001	0.332	0.334	0.347	0.016	0.325	0.378
CO-i5	0.133	0.000	0.132	0.133	0.097	0.018	0.077	0.142
NO2-i1	0.096	0.002	0.093	0.101	0.100	0.015	0.09	0.141
NO2-i2	0.133	0.001	0.131	0.134	0.122	0.014	0.10	0.148
NO2-i3	0.388	0.001	0.384	0.389	0.314	0.077	0.21	0.434
NO2-i4	0.297	0.002	0.295	0.299	0.287	0.012	0.26	0.307
NO2-i5	0.375	0.001	0.374	0.376	0.389	0.032	0.330	0.435
NOx-i1	0.018	0.000	0.018	0.018	0.017	0.001	0.016	0.020
NOx-i2	0.026	0.000	0.026	0.027	0.025	0.002	0.02	0.028
NOx-i3	0.156	0.001	0.154	0.158	0.152	0.019	0.12	0.184
NOx-i4	0.231	0.002	0.229	0.234	0.230	0.017	0.20	0.258
NOx-i5	0.106	0.023	0.087	0.132	0.095	0.011	0.083	0.122

Experiment 2 - Testing errors

Task	Testing errors						
	Gaussian kernel				Product kernels		
	E	stddev	min	max	E	stddev	n m
CO-il	0.210	0.005	0.205	0.217	0.214	0.020	0.1920 .248
CO-i2	1.134	0.007	1.116	1.142	0.878	0.088	0.7090 .988
CO-i3	0.233	0.009	0.221	0.254	0.228	0.019	0.1970 .267
CO-i4	0.326	0.002	0.323	0.329	0.749	0.512	0.4331 .921
CO-i5	0.296	0.005	0.287	0.301	0.321	0.050	0.2040 .374
NO2-i1	2.151	0.052	2.096	2.267	2.263	0.540	1.1892 .997
NO2-i2	5.260	0.045	5.161	5.319	3.928	1.447	2.6616 .874
NO2-i3	0.718	0.004	0.709	0.721	1.033	0.218	0.7641 .351
NO2-i4	0.735	0.011	0.726	0.757	0.734	0.069	0.6690 .908
NO2-i5	0.678	0.024	0.655	0.735	0.913	0.183	0.7091 .302
NOx-i1	2.515	0.015	2.495	2.538	2.409	0.159	2.0932 .658
NOx-i2	3.113	0.019	3.081	3.139	2.495	0.068	2.4162 .592
NOx-i3	1.105	0.008	1.088	1.114	0.956	0.267	0.7301 .689
NOx-i4	0.952	0.008	0.941	0.970	1.256	0.520	0.7742 .610
NOx-i5	0.730	0.102	0.642	0.850	0.748	0.091	0.5440 .856

Experiment 2 - example

Experiment 2-CO

Experiment 2 - NO2

NO2 prediction - training errors

NO2 prediction - test errors

Experiment 2 - NOx

NOX prediction - training errors

NOX prediction - test errors

Experiment 2-CO

Experiment 2-CO

Experiment 2－CO

Experiment 2-CO

Experiment 2-CO

Experiment 2 －NO2

Experiment 2 - NO2

Experiment 2 - NO2

Experiment 2 －NO2

Experiment 2 －NO2

Experiment 2 - NOx

Experiment 2 －NOx

Experiment 2 - NOx

Experiment 2 - NOx

Experiment 2 - NOx

WHAT WORKED?

Conclusions

- Modeling with kernel networks works well for sensor data
- The evolutionary search for parameters was able to find better models in comparison to ad-hoc/standard techniques
- The resulting models are quite small and fast

Challenges

- Missing data
- Semi supervised learning (S. de Vito)
- Surrogate models
- Large data
- Meta-learning takes long time
- Preprocessing
- Expert insight into data
- Influence of factors like time of the year, ...
- Ensemble models

THANK YOU roman@cs.cas.cz

