European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir*

COST Action TD1105

3rd International Workshop *EuNetAir* on *New Trends and Challenges for Air Quality Control* University of Latvia - Faculty of Geography and Earth Sciences Riga, Latvia, 26 - 27 March 2015

KERNEL NETWORKS FOR LEARNING FROM SENSOR DATA

Roman Neruda, P. Vidnerová V. Kůrková

MC Substitute, roman@cs.cas.cz

Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague

Outline

- Kernel networks
 - Theoretical properties
 - Composite and product kernels
- Learning algorithms
 - Beyond parameter setting
 - Evolutionary computing
- Data
- Results
- Discussion
 - Challenges

MODELS

Learning from data

• Problem:

Given set of data samples:

$$\{(\mathbf{x}_{i}, y_{i}) \in R^{d} \times R; i=1, ..., N\}$$

Recover the unknown function f(x)

f: R^{*d*}->*R*

(or find a best approximation)

- Supervised learning
 - Regression
 - Classification
 - Prediction

Regularization theory

- Empirical risk minimization:
 - Find a solution f that minimizes $H(f) = \Sigma (f(\mathbf{x}_i) y_i)^2$, $(i=1 \dots N)$
 - Generally ill-posed problem
 - Choose a solution according to a priori knowledge
 - (what should f look like? e.g. smooth, small oscilations,)
- Regularization:
 - Add a stabilizer *A*(*f*):
 - $H(f) = \Sigma (f(\mathbf{x}_i) y_i)^2 + \gamma A(f), , (i=1 ... N)$
 - A(f) based on Fourier transform divided by a kernel function
 - A(f) defined by a norm on reproducing kernel Hilbert space (RKHS)
 - $f(x) = \Sigma w_i K(\mathbf{x} \mathbf{x}_i)$, for positive K, where $(\gamma \mathbf{I} \mathbf{K}) \mathbf{w} = \mathbf{y}$

NEURAL NETWORKS

A A A STATE

Regularization networks

- f can be represented by a feed-forward network with one hidden layer of units computing K
- Function K is called *basis* or *kernel* function
- choice of K represents our knowledge or assumption about the problem
- choice of K is crucial for the generalization performance of the network

Regularization networks

- Basic Algorithm:
 - 1. set the centers of kernel functions to the data points
 - 2. compute the output weights by solving linear system
 (γ I + K) w = y
- Pros:
 - easy, fast
- Cons:
 - choice of γ and K (and its parameters) is crucial for performance
 - ... and it is data dependent: (no-free-lunch theorem)

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Sum (combination) kernels

- Aronszajn theory: RKHS is closed w.r.t. linear combination $K(x,y) = \alpha K_1(x,y) + \beta K_2(x,y)$
- Each unit is composed of a two linearly combined kernels
- More parameters to set
- Possiblity to combine different kernel function
- Possibility to retain detailed approximation while having good generalization

Product kernels

 Aronzsajn: product of two RKHS is in RKHS

 $K(x_1x_2, y_1y_2) = K_1(x_1, y_1).K_2(x_2, y_2)$

- Each unit has two kernel functions operating on different subsets of inputs
- Heterogenous data:
 - Different properties of attributes
 - Processed by different kernels
- Even more parameters (input split)

Simple learning

- 1. Expert knows/miracle (statistics) happens:
 - Type of kernel function, pairs for combinations and products
 - The regularization parameter γ
 - For combination kernels, the parameters of combination
 - For product kernels, the input split into two subsets
- 2. Then, solve a linear system

OR

- 1. Use tailored search algorithms to set the metaparameters
 - Such as evolutionary algorithm
- 2. Combine it with the linear part of the algorithm

EVOLUTIONARY ALGORITHMS

- 31

Evolutionary learning

Evolutionary learning

- Population based search heuristics
- Prone to local optima
- Suitable for search of heterogeneous spaces/problems
- Does not require additional information such as gradients
- Encoding of metaparameters of kernel networks
 - Floating point parameters together with binary input splits and integer indices of kernel types
- Standard operations of arithmetic crossover for floats, one point crossover for discrete variables, and mutations
- Selection based on cross-validated performance of the fullytrained model

EXPERIMENTS

3

Data

- The dataset contain tens of thousands measurements of gas multi-sensor MOX array devices recording concentrations of several gas pollutants.
- Collocated with a conventional air pollution monitoring station that provides labels for the data.
- The data are recorded in 1 hour intervals.
- S. De Vito et al.

Task	train set	test set	Task	train set	test set
sparse CO	1224	6120	CO i1-5	1469	5875
sparse NO2	1233	6160	NO2 i1-5	1479	5914
sparse NOx	1233	6163	NOx i1-5	1480	5916

Table 1. Overview of data sets sizes.

Preliminary experiments - overview

Crossvalidation errors								
	Sum k	Sum kernels						
Task	E_{avg}	stddev	E_{avg}	stddev	E_{avg}	stddev		
CO	0.152	0.000	0.148	0.002	0.152	0.003		
NO2	0.429	0.003	0.407	0.009	0.434	0.012		
NOx	0.227	0.000	0.207	0.006	0.229	0.005		

Training errors

	Gaussi	an kernel	Produc	t kernels	Sum kernels		
Task	E_{avg}	stddev	E_{avg}	stddev	E_{avg}	stddev	
CO	0.132	0.002	0.123	0.005	0.128	0.010	
NO2	0.308	0.002	0.277	0.025	0.312	0.003	
NOx	0.139	0.001	0.135	0.011	0.139	0.002	

		Test	ing errors			
	Gauss	\mathbf{Sum}	kernels			
Task	E_{avg}	stddev	E_{avg}	stddev	E_{avg}	stddev
CO	0.136	0.001	0.134	0.002	0.138	0.006
NO2	0.334	0.002	0.343	0.011	0.338	0.004
NOx	0.158	0.001	0.158	0.008	0.160	0.005

Preliminary experiments - CO

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Preliminary experiments – NO2

Preliminary experiments - NOx

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Experiment 2 – Training errors

			Train	ing errors				
	Gau	issian	kern	lel	\mathbf{Prc}	oduct	kerne	els
Task	E_{avg} s	stddev	min	max	E_{avg}	stddev	\min	\max
CO-i1	0.050	0.000	0.050	0.050	0.051	0.002	0.049	0.055
CO-i2	0.049	0.000	0.049	0.049	0.046	0.002	0.043	0.050
CO-i3	0.054	0.000	0.053	0.054	0.056	0.003	0.054	0.065
CO-i4	0.333	0.001	0.332	0.334	0.347	0.016	0.325	0.378
CO-i5	0.133	0.000	0.132	0.133	0.097	0.018	0.077	0.142
NO2-i1	0.096	0.002	0.093	0.101	0.100	0.015	0.091	0.141
NO2-i2	0.133	0.001	0.131	0.134	0.122	0.014	0.105	0.148
NO2-i3	0.388	0.001	0.384	0.389	0.314	0.077	0.214	0.434
NO2-i4	0.297	0.002	0.295	0.299	0.287	0.012	0.265	0.307
NO2-i5	0.375	0.001	0.374	0.376	0.389	0.032	0.330	0.435
NOx-i1	0.018	0.000	0.018	0.018	0.017	0.001	0.016	0.020
NOx-i2	0.026	0.000	0.026	0.027	0.025	0.002	0.021	0.028
NOx-i3	0.156	0.001	0.154	0.158	0.152	0.019	0.121	0.184
NOx-i4	0.231	0.002	0.229	0.234	0.230	0.017	0.203	0.258
NOx-i5	0.106	0.023	0.087	0.132	0.095	0.011	0.083	0.122

Experiment 2 – Testing errors

			Test	ing error	S			
	Gaussian kernel			Pro	Product kernels			
Task	E_{avg}	stddev	\min	max	E_{avg}	stddev	min	max
CO-i1	0.210	0.005	0.205	0.217	0.214	0.020	0.192	0.248
CO-i2	1.134	0.007	1.116	1.142	0.878	0.088	0.709	0.988
CO-i3	0.233	0.009	0.221	0.254	0.228	0.019	0.197	0.267
CO-i4	0.326	0.002	0.323	0.329	0.749	0.512	0.433	1.921
CO-i5	0.296	0.005	0.287	0.301	0.321	0.050	0.204	0.374
NO2-i1	2.151	0.052	2.096	2.267	2.263	0.540	1.189	2.997
NO2-i2	5.260	0.045	5.161	5.319	3.928	1.447	2.661	6.874
NO2-i3	0.718	0.004	0.709	0.721	1.033	0.218	0.764	1.351
NO2-i4	0.735	0.011	0.726	0.757	0.734	0.069	0.669	0.908
NO2-i5	0.678	0.024	0.655	0.735	0.913	0.183	0.709	1.302
NOx-i1	2.515	0.015	2.495	2.538	2.409	0.159	2.093	2.658
NOx-i2	3.113	0.019	3.081	3.139	2.495	0.068	2. 416	2.592
NOx-i3	1.105	0.008	1.088	1.114	0.956	0.267	0.730	1.689
NOx-i4	0.952	0.008	0.941	0.970	1.256	0.520	0.774	2.610
NOx-i5	0.730	0.102	0.642	0.850	0.748	0.091	0.544	0.856

Experiment 2 - example

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

NOx prediction - training errors

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

NOx prediction - test errors

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

WHAT WORKED?

Conclusions

- Modeling with kernel networks works well for sensor data
- The evolutionary search for parameters was able to find better models in comparison to ad-hoc/standard techniques
- The resulting models are quite small and fast

Challenges

- Missing data
 - Semi supervised learning (S. de Vito)
 - Surrogate models
- Large data
 - Meta-learning takes long time
 - Preprocessing
- Expert insight into data
 - Influence of factors like time of the year, ...
 - Ensemble models

THANK YOU roman@cs.cas.cz