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Introduction 

Applications: 

 Gas sensors; 

 Field effect transistors; 

 Energy harvesting devices; 

 Light emitting devices. 

 

Methods for the preparation  

Gas phase methods: 

 MOCVD; 

 MBE. 

  

Chemical or solution-base methods: 

 Sol gel; 

 Eelectrodeposition; 

 Hydrothermal growth. 

  

advantages: 

low growth temperature, 

allows for the large scale production, 

low cost,  

flexibility in the selection of the substrate, etc. 
disadvantages: 

low quality 
 

seed layer 

 Annealing in different 

ambient (vacuum, 

hydrogen, argon, air, 

nitrogen); 

 Doping.  

  

 Magnetron sputtering; 

 Pulsed laser deposition; 

 Spin coating;  

Our solution: 

 Electrophoretic deposition. 
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Preparation of the seed layer 
Electrophoretic deposition. 

SEM images of ZnO NPs prepared by 

EPD. (a) top view, (b) cross section. 

Si

ZnO NPs 314 nm

b

a100 nm

AFM image of ZnO NPs 

prepared by EPD. 

0 20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

1min

 

 

T
h

ic
k

n
es

s 
(

m
)

Voltage (V)

(a)

20V

0 1 2 3 4 5 6

0.2

0.4

0.6

0.8 (b)
 

 

 

Time (min)

Relationship between the ZnO NP layer 

thickness and (a) applied voltage, (b) 

deposition time. 
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X-ray diffraction pattern. 
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4 K photoluminescence spectrum. 

R. Yatskiv, J. Grym, P. Gladkov, O. Cernohorsky, J. Vanis  and J.H.Dickerson, Solid State Electron (submited) 
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Preparation of the ZnO NRs 

Hydrothermal growth (95°C, 3h) 

Zinc nitrate {Zn NO3 2 ∗ 6H2O NO3 } 
HMTA {C6H12N4} 
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SEM images of ZnO NRs 

X-ray diffraction pattern. 

4 K photoluminescence spectrum. 

R. Yatskiv, J. Grym and M. Verde, Solid State Electron 105, 70-73 (2015). 

R. Yatskiv, V. V. Brus, M. Verde, J. Grym and P. Gladkov, Carbon 77, 1011-1019 (2014). 
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Electrical characterization of ZnO nanorods 

 

R. Yatskiv, V. V. Brus, M. Verde, J. Grym and P. Gladkov, Carbon 77, 1011-1019 (2014). 

Schematic cross section of the 

graphite/ZnO NRs junction. 

Differential resistance Rdiff of the graphite/ ZnO NRs 

heterojunctions vs. voltage. The inset shows the 

equivalent DC circuit.  
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Graphite/ZnO NRs junction for UV photodetectors 
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Schematic diagram of the working principle of the 

graphite/ZnO NRs junction UV photodetector 

I-V characteristics of the graphite/ZnO NRs junction 

measured in darkness and under UV illumination 

Time dependent photoresponse of the graphite/ZnO NRs 

at a reverse bias 1 mV under UV illumination with 395nm 

light for 4 cycles.  

Photoresponse under various UV illumination intensities 

at a reverse bias of 1 mV. 

R. Yatskiv, J. Grym and M. Verde, Solid State Electron 105, 70-73 (2015). 



Graphite/ZnO NRs and Graphite-Pt NPs/ZnO NRs  junction 

 for gas sensors 
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Current transient characteristics of (a) the graphite/ZnO NRs 

junction, and (b) the graphite Pt NPs/ZnO NRs junction 

measured at -0.1 V. 

R. Yatskiv, J. Grym, V. V. Brus, O. Cernohorsky, P. D. Maryanchuk, C. Bazioti, G. P. Dimitrakopulos and P. Komninou, Semicond Sci Tech 29 (4), 045017 (2014). 

R. Yatskiv, J. Grym, P. Gladkov, O. Cernohorsky, J. Vanis  and J.H.Dickerson, Solid State Electron (submitted) 
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CONCLUSIONS 

 Arrays of ZnO NRs were prepared by hydrothermal growth on 

electrophoretically deposited seed layers of ZnO nanoparticles. 

 Colloidal graphite was deposited on top of these arrays to form a 

Schottky barrier. 

 The Schottky barrier was employed in highly-sensitive self-powered UV 

photodetectors and hydrogen sensors. 

 When the NR arrays were decorated with Pt nanoparticles, the hydrogen 

sensing response was improved by a factor of 100, and faster recovery 

and response times were achieved. 
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