European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - EuNetAir

COST Action TD1105

3rd International Workshop *EuNetAir* on New Trends and Challenges for Air Quality Control University of Latvia - Faculty of Geography and Earth Sciences Riga, Latvia, 26 - 27 March 2015

ONE-DIMENSIONAL ZnO NANOSTRUCTURES AND THEIR OPTOELECTRONIC APPLICATIONS

Roman Yatskiv

WG Member / yatskiv@ufe.cz

Institute of Photonics and Electronics Institute of Photonics and Electronics/ Czech Republic

by the EU Framework Programme

e Czech Academy of Sciences

Introduction

Methods for the preparation

Gas phase methods: ✓ MOCVD:		Chemical or solution-base methods:
✓ MR	F	 Sol gel, Eclectrodenosition.
	· _ .	Electrodeposition;
		✓ Hydrothermal growth.
advantages: ✓ low growth temperature, ✓ allows for the large scale production, ✓ low cost, ✓ flexibility in the selection of the substrate, etc.		
(low guglity)		
tow quality		
✓ seed layer		

Applications:

- ✓ Gas sensors;
- ✓ Field effect transistors;
- Energy harvesting devices;
- ✓ Light emitting devices.
- Annealing in different ambient (vacuum, hydrogen, argon, air, nitrogen);
- ✓ Doping.

✓ Magnetron sputtering;

- ✓ Pulsed laser deposition;
- ✓ Spin coating;

Our solution:

✓ Electrophoretic deposition.

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Preparation of the seed layer

Electrophoretic deposition.

ZnO NPs

(a)

Relationship between the ZnO NP layer thickness and (a) applied voltage, (b) deposition time.

0.8 - (b)

SEM images of ZnO NPs prepared by EPD. (a) top view, (b) cross section.

AFM image of ZnO NPs prepared by EPD.

4 K photoluminescence spectrum.

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Preparation of the ZnO NRs

Hydrothermal growth (95°C, 3h) Zinc nitrate $\{Zn(NO_3)_2 * 6H_2O(NO_3)\}$ HMTA $\{C_6H_{12}N_4\}$

SEM images of ZnO NRs

Electrical characterization of ZnO nanorods

R. Yatskiv, V. V. Brus, M. Verde, J. Grym and P. Gladkov, Carbon 77, 1011-1019 (2014).

Graphite/ZnO NRs junction for UV photodetectors

I-V characteristics of the graphite/ZnO NRs junction measured in darkness and under UV illumination

Schematic diagram of the working principle of the graphite/ZnO NRs junction UV photodetector

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Time dependent photoresponse of the graphite/ZnO NRs at a reverse bias 1 mV under UV illumination with 395nm light for 4 cycles.

Photoresponse under various UV illumination intensities at a reverse bias of 1 mV.

R. Yatskiv, J. Grym and M. Verde, Solid State Electron 105, 70-73 (2015).

Graphite/ZnO NRs and Graphite-Pt NPs/ZnO NRs junction

for gas sensors

R. Yatskiv, J. Grym, V. V. Brus, O. Cernohorsky, P. D. Maryanchuk, C. Bazioti, G. P. Dimitrakopulos and P. Komninou, **Semicond Sci Tech** 29 (4), 045017 (2014). R. Yatskiv, J. Grym, P. Gladkov, O. Cernohorsky, J. Vanis and J.H.Dickerson, **Solid State Electron** (submitted)

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

CONCLUSIONS

- ✓ Arrays of ZnO NRs were prepared by hydrothermal growth on electrophoretically deposited seed layers of ZnO nanoparticles.
- ✓ Colloidal graphite was deposited on top of these arrays to form a Schottky barrier.
- ✓ The Schottky barrier was employed in highly-sensitive self-powered UV photodetectors and hydrogen sensors.
- ✓ When the NR arrays were decorated with Pt nanoparticles, the hydrogen sensing response was improved by a factor of 100, and faster recovery and response times were achieved.

Acknowledgment

Department of Synthesis and Characterization of Nanomaterials

J. Grym P. Gladkov O. Cernohorsky J. Vanis M. Hamplova

