European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir* 

#### **COST Action TD1105**

3<sup>rd</sup> International Workshop *EuNetAir* on *New Trends and Challenges for Air Quality Control* University of Latvia - Faculty of Geography and Earth Sciences Riga, Latvia, 26 - 27 March 2015

## **GAS SENSORS - FIRE DETECTION AND BEYOND**

# SIEMENS

#### **Oliver von Sicard**

Function in the Action: WG Member

Oliver.v.sicard@siemens.com

Siemens AG / Germany

## Outline

- History & Basics
- Status Quo
- Gas Sensors for fire detection?
- The Main Issue
- Where to Go?





## **Short History of Fire Detection**



Mine Safety and Health Administration



Chemiker-Zeitung, Band 1896

- Canaries were the first "poisonous gas detectors", used mainly in coal mines
- First automatic electric fire alarm invented in 1890 by Francis R. Upton (U.S. patent no. 436,961)
- 1960ies: smoke detectors started to be mass produced in the US

## **Optical Detector Basics**



## **Fire Detection is Smoke Detection**

**Technology** 

#### **Historical**

#### **Today's standard**



Author: Snowmanradio; wikimedia commons; CC BY-SA 2.0

"gas sensors" - detection of CO and other poisonous **gases** 

Smoke detectors - fires are detected via the **smoke** they produce.

Nowadays detection criteria are strongly governed by standards!





EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG



## **Siemens SWING**

- Safe wireless communication by using at least two redundant communication paths
- self-mending mesh network
  with deception-free ASA
  technology
- radius of 60 m spanning up to five floors



SWING: Siemens wireless fire detector network mesh technology

#### Main challenges: 100% safe communication + battery lifetime



## **Aspirating Smoke Detectors**

Aspirating smoke detectors (ASD) combine

- a highly sensitive detector (optical)
- a pump
- a tubing system that can cover large areas

Air/smoke particles are transported towards the detector through small holes in the tubes







## **Aspirating Smoke Detectors**

Aspirating smoke detectors (ASD) combine a highly sensitive detector (optical) • a pump • a tubing system that can cover large areas Still all optical smoke detectors SIEMENS . () · 2 There is a standard (EN 54-20) BLUE PROJECTOR IRIS RECEIVER CELL scattered light SMOKE Siemens ASD PARTICLE IRED PROJECTOR

COOPERATION IN SCIENCE AND TECHNOLOGY

## **Evolution of Multi-Criteria Detectors**



EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

## **Evolution of Multi-Criteria Detectors**



## **Multi-Criteria detector**





Multicriteria Fire Detection



Signals available for other systems:

- Obscuration [%/m]
- Temperature [°C]
- CO concentration [ppm]

**ON/OFF control signal for T and CO** 



## **Multi-Criteria Fire Detection**



Signal evaluation adapted to environment using gas sensor signal



### **Target Gases for Fire Detection**



#### Reliability of fire detection

#### Miniaturisation

## **Research platform for fire gas detection**



D. Gutmacher et al., Siemens AG, Gas sensor technologies for fire detection, Sens. Actuators B: Chem. (2011), doi:10.1016/j.snb.2011.11.053



## What are the target gases?

#### Empirical approach: Fire tests



#### Standardized test fires $\rightarrow$ standardized smoke particles

#### What about gas concentrations?

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

## **Simple Target Gases**

Known guiding gases in fires: CO, H2, NOx, CO2, H2O, NH3...



**Different fires produce different gas mixtures** 

→ discrimination of fire types possible

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

## **Complex Target Gases**



**Figure 5.1:** Gases arising during a cable fire. Quelle: Messung des Giftgascocktails bei Bränden Dipl.-Ing. (FH) Peter Basmer (Forschungsstelle für Brandschutz, Universität Karlsruhe) Dr. Gerhard Zwick (Ansyco GmbH, Karlsruhe)

| gas              | concentration |
|------------------|---------------|
| CO <sub>2</sub>  | 300-5000 ppm  |
| NO <sub>2</sub>  | 0.05 - 5 ppm  |
| CO               | 10 – 70 ppm   |
| H <sub>2</sub> O | 2 –40 % rel.  |
| H <sub>2</sub>   | 4 – 20 ppm    |
| Methanol         | < 10 ppm      |
| Formic Acid      | < 5 ppm       |
| Methane          | < 10 ppm      |
| Formaldehyde     | < 10 ppm      |
| Ethylene         | < 10 ppm      |
| Acrolein         | < 10 ppm      |
|                  |               |

Complex target gases point to specific fire events e.g. smoldering cable insulation, toxic chemicals... but usually low ppm range

## **Price Issues for Fire Detection**

Industry and consumers are driven by money! Smoke detectors are no lifestyle product.





Kidde 0915E Smoke Detector, 9V Battery Powered Ionization (i9050) by Kidde

\$8.49 \$39.99

Source: amazon.com



Kidde Model Pi9010 Dual Sensor, Battery Operated Photoelectric / Ionization Smoke Alarm by Kidde

\$24.49 \$35.99

Shot-in Honeycomb Gas Smoke Detector Soot Carbon Monoxide Alarm by shot-in

#### How will we compete here?

Why is gas sensor based fire detection so much better?

#### \$7.95

FREE Shipping

## **Price Issues for Fire Detection**



## **CO2 for HVAC**

#### CO2 is used as an input for HVAC control

→ Stay below Pettenkofert limit (1000ppm CO2) "comfort application"

#### CO2 is measured using optical sensors (NDIR)

high price, high energy use, big size

 $\rightarrow$  application limited to duct-systems

If your smoke detector measures CO2, use it for HVAC!





## **CO2 and VOCs for Automated Cooking**

absolute Signalhöhe.

200

400

600

Zeit ----> Signal transient of conventional gassensor array

800

1000

#### Benefit

Early Fire detection + comfort and quality control with baking, roasting and toasting

#### Approach

→ Detection of gases emitted during cooking process using gas sensors
 → CO<sub>2</sub>-sensors as approach for bakery
 → Fire Detection in Fume Hood



# Combine fume hood baking controll with a fire detector in the kitchen



1200 s 1400

## **Activity Monitoring with Gas Sensors**



# Use multivariate data analysis of the gas sensor data for activity monitoring

## **Explosives Detection for Security**



Lets add a different layer: e.g. molecular imprinted polymers for TNT / TATP detection

## **Combination and Integration**

#### Sensor combinations

- 1 housing
- 1 power supply
- 1 communication module
- + many sensors
- Data (signal) availability and reuse
  - input for AQ
  - occupancy detection
  - internet of things (interconnected appliances)
  - security applications

Fire

#### Architectural benefits!



EAN COOPERATION IN SCIENCE AND TECHNOLOGY

## Conclusion

# If you cannot beat the costs of conventonal smoke detectors, beat them with added functionality!

(But please, keep the fire detector functional)

