European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir*

COST Action TD1105

3rd International Workshop EuNetAir on *New Trends and Challenges for Air Quality Control* University of Latvia - Faculty of Geography and Earth Sciences Riga, Latvia, 26 - 27 March 2015

Silicon-on-Insulator Micro-hotplates Platforms for Humidity Sensing: Follow-up of the Air Quality Intercomparison Exercise

Nicolas André

WG1-2 Member, nicolas.andre@uclouvain.be Université catholique de Louvain / Belgium

The research context

Combustion process monitoring

- FP7 SOI-HITS: System-in-Package demonstrator for domestic boiler monitoring (More-than-Moore roadmap)
- Methane combustion process :

 $CH_4 + Air \rightarrow CO_2 + H_2O + CO + NO_X$

Measurements of CO₂, O₂, CO, %RH and T above the burner, i.e. up to 225°C

Sensor platform description

- Electrothermal properties:
 - Very good insulation,
 - Low thermal mass,
 - Heater: 35 mW for 600°C,
 - Thermal transient time: \clubsuit 10 ms, \clubsuit 20 ms
 - Long term testing: 2% resistance variation for 10.000 h/10 Hz/400°C,
 - Thermodiode: ~1 mV/K up to 600°C
 - Reproducible across wafer

Thermodiode forward biased at 65 μ A

- Gas Sensing :
 - Calorimetric
 - Impedimetric: with electrodes
 - Differential measurements
 - Various metals
 - Co-integrated IC possible

Basic micro-hotplate chip

CAMBRIDGE CMOS SENSORS

UNIVERSITY OF CAMBRIDGE

Water vapour sensing

Commercial humidity sensors

Technological trends:

- widespread use of polymer as PI easy to process and linear response
- thin and porous ceramic materials lower time response

Sensirion CMOS SHT21 Typ. 4 € piece -40°C to 125°C Response time 8 s Polymer

Our humidity sensor

• Sensing principle: ceramic Al₂O₃

 Grotthuss mechanism with ceramics like Al₂O₃ (hydroxyl-terminated) for physisorbed layers

Protons hoping through hydrogen bonding with E field

- \rightarrow conductivity increase
- Addition of water molecules, free to orient themselves
 - \rightarrow dielectric constant increase

Our humidity sensor

- Aluminum oxide coating on interdigitated electrodes
 - ♦ Surface adsorbed water on this hydrophilic metal oxide
- Optional:
 - ♦ heater for fast recovery after condensation, anti-drift methods and cleaning
 - ♦ local T to determine the %RH point

Results

• Portable system = Micro-hotplate + Read-out circuitry + Freescale KL25Z[®] + Acer[®] Netbook

Our %RH sensor

MLP315 T sensor on Freescale board

• Portable system = Micro-hotplate + Read-out circuitry + Freescale KL25Z[®] + Acer[®] Netbook

Our %RH sensor

MLP315 T sensor on Freescale board

• Portable system = Micro-hotplate + Read-out circuitry + Freescale KL25Z[®] + Acer[®] Netbook

our %RH sensor

Aveiro experience results

- How to compare the possible reference with our sensor?
 - Discrepancies between %RH and T sensors dispersed on the car:
 - WTX520; GrayWolf; K. Karatzas
 - As large a 5 °C
 - As large as 25%RH
 - Larger discrepancies for our T sensor MLP315:
 - As large as 9 °C
 - Thermodiode on micro-hotplate not implemented for datalogging at that time

- How to compare the possible reference with our sensor?
 - Discrepancies between %RH and T sensors dispersed on the car:
 - WTX520; GrayWolf; K. Karatzas
 - As large a 5 °C
 - As large as 25%RH
 - Larger discrepancies for our T sensor MLP315:
 - As large as 9 °C
 - Thermodiode on micro-hotplate not implemented for datalogging at that time
 - Errors, sun exposition, ventilation, packaging, self-heating and possible condensation considerably influence the local atmospheric conditions

Complexity of the comparison exercise: many unknowns! -> machine-learning

Climatic chamber experience set-up

- Come-back to a controlled environment
- Oscillating voltage period measurements under variable %RH and T

ESPEC SH-261: • 15 to 35°C, • 45 to 90%RH

• Al₂O₃ coated vs uncoated microhotplate

• Al₂O₃ coated vs uncoated microhotplate

- ≈10x oscillating period increasing
- very small steps: ~continuous variation as weather

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Properties summary

- Simple post-process functionalization with Al₂O₃ coating
- Sensitivity uncoated/coated: 80ppm/%RH vs 2.5%/%RH
- ~2% non linearity error
- ± 2-3%RH accuracy
- Very fast: 0.5 s
- Low power: 200 μW

Properties summary

- Simple post-process functionalization with Al₂O₃ coating
- Sensitivity uncoated/coated 80ppm/%RH vs 2.5%/%RH
- ~2% non linearity error
- ± 2-3%RH accuracy
- Very fast: 0.5 s
- Low power: 200 μW

%RH accuracy for %RH Sensirion ±2%RH (up to ± 12%RH according ambience)

• However, more tests have to be done to extend T, %RH range and to determine the best ageing conditions

Conclusions

1. Functionalized microhotplates with readout interface for "point-of-care" humidity sensing have been demonstrated

Microhotplate

Circuit + microhotplate

- 2. CMOS-SOI-MEMS technology is very promising to meet the *More-than-Moore* roadmap for environment gas sensing
- 3. Real experimental conditions are new for university labs and so teach a lot!

Acknowledgements

Many thanks to co-authors

G. Pollissard-Quatremère¹, N. Couniot¹, P. Gérard¹, Z. Ali², F. Udrea^{2,3},
L. A. Francis¹ and D. Flandre¹

 ¹ICTEAM, Université catholique de Louvain, Louvain-la-Neuve, Belgium
²Cambridge CMOS Sensors, Cambridge, United Kingdom
³Department of Engineering, Electrical Engineering Division, University of Cambridge, Cambridge, United Kingdom

Many thanks to collaborators

- P. Simon, O. Poncelet, S. Druart, C. Renaux, E. Boufouss, M. Zitout
- UCL WINFAB technical teams
- Many thanks to funding
 - European FP-7 SOI HITS, FEDER MINATIS

