European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir*

COST Action TD1105

4th International Workshop *EuNetAir* on *Innovations and Challenges for Air Quality Control Sensors* FFG - Austrian Research Promotion Agency - Austrian COST Association Vienna, Austria, 25 - 26 February 2016

A New Approach for On-site Calibration and Calibrated Quantification of VOCs with Low-Cost Sensors

Andreas Schütze, Caroline Schultealbert, Tobias Baur, Tilman Sauerwald

EDUNDATION through a European Commission contract

Action WG2 Leader & MC Member, schuetze@LMT.uni-saarland.de

Saarland University, Saarbrucken, Germany

VOCs: key for Indoor Air Quality

- Volatile Organic Compounds (VOCs) are highly relevant for IAQ
- Some are proven or suspected to be carcinogenic
- Resulting target concentrations are low ppb or even sub-ppb
 → High sensitivity required
- Benign VOCs (e.g. ethanol) can occur at much higher conc. (ppm)
 → High selectivity required
- Most relevant target VOCs according to European studies: formaldehyde, benzene, naphthalene

Target gas	Guide	line values
	µg/m³	ppb
Formaldehyde [1]	100	81.3
Benzene [2]	5	1.57
Naphthalene [1]	10	1.9

[1]: WHO guidelines for indoor air quality (2010)
[2]: Umweltbundesamt Infoblatt Benzol (12/2010) *Note: some national regulations target even lower concentration limits, e.g. France*

VOC-IDS: Volatile Organic Compound Indoor Discrimination Sensor

- Transnational project funded within MNT-ERA.net
- Selective VOC detection, primarily formaldehyde, benzene
- Novel ceramic nanomaterial metal-oxide semiconductor gas sensors
- Intelligent signal processing based on temperature cycling
- Networked systems connected to KNX bus

SENSIndoor: Nanotechnology based intelligent multi-SENsor System with selective pre-concentration for Indoor air quality control

- EU-FP7 project NMP.2013.1.2-1: Nanotechnology-based sensors for environmental monitoring
- Microtechnology based approach for MOS and SiC-GasFET sensors
- Pre-concentration to boost sensitivity and selectivity
- Integrated multi-sensor approach
- Application specific priorities and field tests

> Indoor Air Quality monitoring

MNT-ERA.net project VOC-IDS

- Volatile Organic Compound Indoor Discrimination Sensor
- Scenario specific detection of hazardous VOC
- Integration of sensor system into KNX building automation networks

WP9: Project coordination (incl. joint IPR strategy, input to standardization, dissemination) - LMT

> Calibration

First step: novel gas mixing system for VOC testing/calibration @ (sub) ppb-level

N. Helwig et al.: Gas mixing apparatus for automated gas sensor characterization, Meas. Sci. Technol. 25 (2014) 055903

> Calibration

Novel gas mixing system: results of first sensor tests

N. Helwig et al.: Gas mixing apparatus for automated gas sensor characterization, Meas. Sci. Technol. 25 (2014) 055903

MNT-ERA.net project VOC-IDS

- Example for selective detection of VOCs in interfering background
 Classification of formaldehyde benzene naphthalene in the presence of eth
- Classification of formaldehyde, benzene, naphthalene in the presence of ethanol **Concentration (ppb)** humidity Interferents (EtOH ppm) target gas Air NA 40%, 60% none, 0.4, 2 Formaldehyde 10, 100 40%, 60% none, 0.4, 2 0.5, 4.7 Benzene 40%, 60% none, 0.4, 2 Naphthalene 2, 20 40%, 60% none, 0.4, 2

Classification target	interferent concentrat.	relative humidity	number of LDA steps for charac.	Estimated # of LDAs
generalized classification	0, 0.4, 2	40%, 60%	1	1
classification w known r.h.	0, 0.4, 2	known	1 (2)	(1+) 5*1
classification w known EtOH	known	40%, 60%	2	1+10(?)*1

> IAQ monitoring with MOS sensors

9

> IAQ monitoring: field test systems

- Stand-alone field test systems by 3S GmbH (Saarbrücken, Germany)
- 2 MOS gas sensors (+ CO₂ + humidity) with independent temperature control
- Data storage on SD card

Conclusions:

better sensitivity and selectivity required

> on-site calibration required

Setup for system calibration

mnt-era.net

SENSIndoor technologies

- Nanotechnology for improved sensor elements
 - Pulsed Laser Deposition (U Oulu, Picodeon)

for novel, highly sensitive gas-sensitive layers suitable for wafer level mass production

- Selective pre-concentration (*FhG-ICT*)
 - based on MOFs (metal-organic frameworks) \rightarrow and MIPs \checkmark (molecular imprinted polymers)

Calibration idea: based on two-phase equilibrium **Quantification idea**: make use of rate constants measured in temperature cycled operation

Approach

- (1) Realization of mobile calibration standards, based on a <u>two-phase equilibrium</u>
 - General approach studied with simulations
 - Reproducible preparation of various concentrations
 - Comparison of calibration standards with analytical reference measurements (GC-MS)
- (2) Improved quantification using MOX sensors: modelbased approach using rate constants after temperature step changes (limited to µsensors, low thermal time constants)
- (3) Field tests (limited so far)

[PA01]

Basics

- Gas phase concentration in a two phase system in thermodynamic equilibrium is determined by vapor pressure p₀
- Vapor pressure of an ideal (liquid) mixture is proportional to the fraction x_i of substance i:

Henry's law $p_i = k_{H,i,j} \cdot x_i$

Henry constant is specific for each combination of substances (modelling of the activity a = γ · x = p_i/p₀ can be based on UNIFAC model)
 (*"universal quasichemical functional group activity coefficients*")

Realization of mobile calibration standards

Substances

- Toluene $C_7H_8 \rightarrow \text{model VOC}$
 - Non-polar liquid, vapor pressure 2.91 kPa (20 °C)
 - Used as reference for total VOC values in gas chromatography
 - Simple handling
- Squalane $C_{30}H_{62}$
 - Long-chained alkane, very low vapor pressure 0.02 µPa
 - Non-polar liquid, no health concerns

Simple test set-up

- Standard lab bottles (Duran Protect), volume 50 ml
- Sensor mounted in regular PP screw cap
- Measurement duration: min. 30 minutes
- Magnetic stirrer for faster equilibration

[MS13]

[A014]

Improved quantification using MOX sensors

25.02.2016

Improved quantification using MOX sensors

25.02.2016

Purification (!)

 Squalane is purified at 80 °C and 500 ml/min flow rate (zero air or nitrogen 5.0) for 72 h

	Sensor signal (ra	ate constant k, mean value	e for all temperatures)	<u>Chromatogramm</u>
	Normal room air	Squalane (unpurified)	Squalane (zero air)	Squalane (nitrogen)
former TCO cycle	$1.55 \cdot 10^{-2} \frac{1}{s}$	$3.42 \cdot 10^{-2} \frac{1}{s}$	$1.46 \cdot 10^{-2} \frac{1}{s}$	
new TCO cycle	$1.1 - 1.2 \cdot 10^{-2} \frac{1}{s}$		$0.95 \cdot 10^{-2} \frac{1}{s}$	$0.73 \cdot 10^{-2} \frac{1}{s}$

Preparation

Lower than normal background?!

- Logarithmic dilution series (precision scale & micro pipette)
- After each step: 15 minutes stirring for equilibration

Fraction of Toluene in the liquid phase (concentration based on UNIFAC model at 20 °C in the headspace)

						• •
	sample 2	sample 3	sample 4	sample 5	sample 6	sample 7
Dilution series 5	35.1 ‰ (658 ppm)	3.52 ‰ (66.0 ppm)	0.355 ‰ (7.03 ppm)	0.0397 ‰ (0.744 ppm)		
Dilution series 6	190 ppm (3.13 ppm)	64 ppm (1.11 ppm)	19 ppm (0.325 ppm)	6,6 ppm (0.114 ppm)	2.0 ppm (0.0344 ppm)	0.67 ppm (0.0117 ppm)
Dilution series 6	190 ppm (3.13 ppm)	64 ppm (1.11 ppm)	19 ppm (0.325 ppm)	6,6 ppm (0.114 ppm)	2.0 ppm (0.0344 ppm)	0.67 ppm (0.0117 ppm)

25.02.2016

Andreas Schütze: A New Approach for On-site Calibration and Calibrated Quantification of VOCs with Low-Cost Sensors

Analytical reference

- Injection of 5 ml vapor in GC injector
- Internal standard: 1 µl liquid Toluene to compensate instrument variations
- Reference for quantification: headspace of pure Toluene

66 ppm

 14×10^4

12

10

Zählrate a.u.

- Estimate of sample concentration uncertainties
 - Weighing and pipetting errors during preparation: < 5 %
 - Vapor pressure changes due to temperature: 5 % / °C
 - Lifetime of calibration standard up to 5 % error: 30 35 calibrations
 - Sufficient for TVOC field calibration

[CS15a]

Calibration curve using rate constant approach

- Nearly linear dependence in double logarithmic plot (i.e. $k_{gas} = a \cdot c^b$) over wide concentration range
- Quantification over nearly 5 orders of magnitude, saturation for high concentrations (limit of method/model), for low concentration electronic hardware needs to be improved
- Sometimes large differences between gas mixing app and calibration standards, but: general trend is similar although backgrounds (zero air, room air) are quite different

CONCLUSIONS

- Improved quantification with MOX sensors based on TCO and rate constant determination (model based approach)
 - Suitable especially between 100 ppb and 100 ppm
 - More stable compared to resistance \rightarrow suppression of baseline effects
- Novel approach for on-site calibration based on two-phase equilibrium and liquid mixtures
 - Also provides on-site zero air when pure Squalane is used (VOCs from the ambient dissolve in Squalane, greatly reducing concentration)
 - Temperature dependence of vapor pressure limits the overall accuracy under normal ambient conditions

OUTLOOK

- Improved measurement hardware
 - Able to accurately measure up to GOhm in milliseconds (!)
 - Low noise
- Novel adaptive measurement methods
 - Instead of fixed temperature steps adjust temperature to control E_B
 - Wait for specific relaxation and determine necessary time as signal
- Experiments with further VOCs (benzene, formaldehyde, naphthalene for IAQ) and VOC mixtures
- Temperature stabilized calibration standards
- Gel or membrane based calibration standards for easier handling

Special thanks to

Tobias Baur (bachelor thesis sensor model) Caroline Schultealbert (master thesis) Tilman Sauerwald (idea and thesis supervision) Key-VOCs project partners for valuable discussions the whole team at LMT Literature

AUTA ACTOS OLGAINES, 2014. SALELY DALA SHEEL - TOILEILE

- [CS15a] Schultealbert, C., 2015. Ansätze für die Kalibrierung und die quantitative Messung von Spurengasen mit Halbleitergassensoren, Master thesis, Lab for Measurement Technology, Saarland University
- [CS15b] Schultealbert, C. et al., 2015. Ansätze für die Kalibrierung und die quantitative Messung mit Halbleitergassensoren im sub-ppm Bereich, Proceedings 12. Dresdner Sensor-Symposium, 07.-09.12.
 2015, Dresden, Germany
- [DB15] Doris Brödner (Bundesanstalt für Materielaforschung und -prüfung BAM), 2015. Persönliche Mitteilung.
- [DF15] Deutsche Forschungsgemeinschaft, 2015. *MAK- und BAT-Werte-Liste 2015*, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.
- [EU04] EU, 2004. Richtlinie 2004/42/EG des Europäischen Parlaments und des Rates vom 21.April 2004. *Amtsblatt der Europäischen Union*, L143, pp.87–96.
- [MS13] Schüler, M. et al., 2013. Detecting Trace-Level Concentrations of Volatile Organic Compounds with Metal Oxide Gas Sensors. In *IEEE Sensors*. Baltimore, pp. 1–4.
- [PA01] Atkins, P.W., 2001. *Physikalische Chemie*, Weinheim: WILEY-VCH Verlag GmbH.
- [PB04] Burge, P.S., 2004. Sick building syndrome. *Occupational and environmental medicine*, 61, pp.185–190.
- [SA14] Sigma-Aldrich Chemie GmbH, 2014. Sicherheitsdatenblatt Squalan.
- [TB14] Baur, T., 2014. *Modell eines Halbleitergassensors im temperaturzyklischen Betrieb*. Bachelor thesis, Lab for Measurement Technology, Saarland University.
- [UB07] Umweltbundesamt, 2007. Beurteilung von Innenraumluftkontaminationen mittels Referenz- und Richtwerten. *Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz*, 50, pp.990–1005.
- [US12] US Environmental Protection Agency, 2012. An Introduction to Indoor Air Quality (IAQ) Volatile Organic Compounds (VOCs). Available at: http://www.epa.gov/iaq/voc.html [Accessed July 29, 2015].
- [VP94] Piacente, V., Fontana, D. & Scardala, P., 1994. Enthalpies of Vaporization of a Homologous Series of n-Alkanes Determined from Vapor Pressure Measurements. *Journal of Chemical & Engineering Data*, 39, pp.231–237.
- [WHO00] WHO Regional Office for Europe, 2000. *Air Quality Guidelines Second Edition*, Copenhagen.