European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir*

COST Action TD1105

4th International Workshop *EuNetAir* on *Innovations and Challenges for Air Quality Control Sensors* FFG - Austrian Research Promotion Agency - Austrian COST Association Vienna, Austria, 25 - 26 February 2016

Use of novel sensor technologies in the environmental health and climate change domain

Nuria Castell

MC Member and WG Member

ncb@nilu.no

NILU / Norway

CITI-SENSE and Citi-Sense-MOB projects

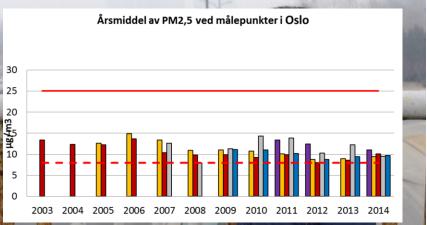
- Development of sensor-based Citizen's Observatories for improving the quality of life in cities
- Collaborative Project funded by FP7
- 27 project partners from Europe, South Korea, and Australia
- Case studies at 9 locations throughout Europe

- Mobile services for environmental and health citizens' observatory
- EMMIA project
- 5 project partners from Norway
- Case study in Oslo

Air pollution is a major environment-related health threat

Chronic effects of air pollution on respiratory health in Southern California children: findings from the Southern California Children's Health Study

Zhanghua Chen¹, Muhammad T. Salam¹, Sandrah P. Eckel², Carrie V. Breton¹, Frank D. Gilliland¹


Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE)

Ole Raaschou-Nielsen, Zorana J Andersen, Rob Beelen, Evangelia Samoli, Massimo Stafoggia, Gudrun Weinmayr, Barbara Hoffmann, Paul Fischer, Mark J Nieuwenhuijsen, Bert Brunekreef, Wei W Xun, Klea Katsouyanni, Konstantina Dimakopoulou, Johan Sommar, Bertil Forsberg, Lars Modig, Anna Oudin, Bente Oftedal, Per E Schwarze, Per Nafstad, Ulf De Faire, Nancy L Pedersen, Claes-Göran Östenson, Laura Fratiglioni, Johanna Penell, Michal Korek, Göran Pershagen, Kirsten T Eriksen, Mette Sørensen, Anne Tjønneland, Thomas Ellermann, Marloes Eeftens, Petra H Peeters, Kees Meliefste, Meng Wang, Bas Bueno-de-Mesquita, Timothy J Key, Kees de Hoogh, Hans Concin, Gabriele Nagel, Alice Viller, Sara Grioni, Vittorio Krogh, Ming-Yi Tsai, Fulvio Ricceri, Carlotta Sacerdote, Claudia Galassi, Enrica Migliore, Andrea Ranzi, Giulia Cesaroni, Chiara Badaloni, Francesco Forastiere, Ibon Tamayo, Pilar Amiano, Miren Dorronsoro, Antonia Trichopoulou, Christina Bamia, Paolo Vineirs^{*}, Gerard Hoek^{*}

Summary

Background Ambient air pollution is suspected to cause lung cancer. We aimed to assess the association between long-term exposure to ambient air pollution and lung cancer incidence in European populations.

Situation in Oslo

Reference Air Quality Monitoring

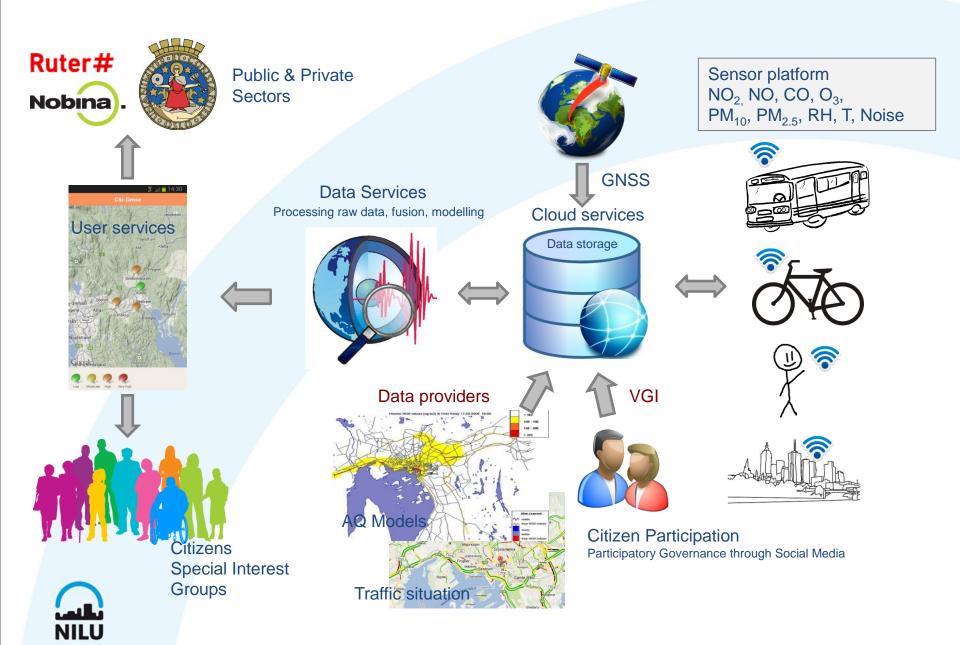
- Very accurate
- Large
- Complex to operate
- High-maintenance
 Expensive
- Very sparse

Low-cost Air Quality Monitoring

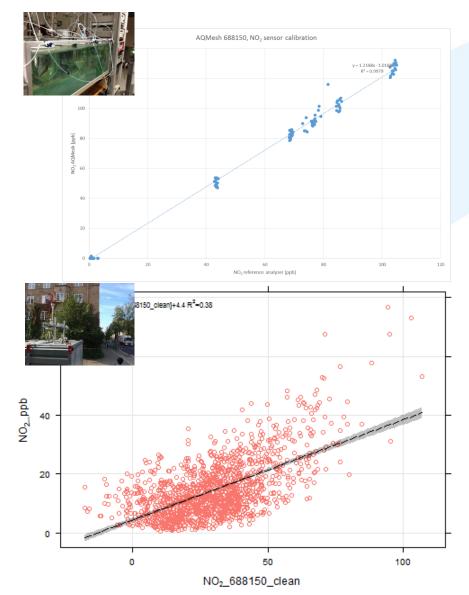
- Small
- Easy to operate
- Medium/Low-maintenant
 Ubiquitous monitoring
 Personal monitoring

Satellite Air Quality Monitoring

- Global data coverage
- Large


Bidgee

- Complex to operate
- High-maintenance,
- Expensive
- Low resolution


New services

Air quality where you are
High-resolution maps
Personalized information

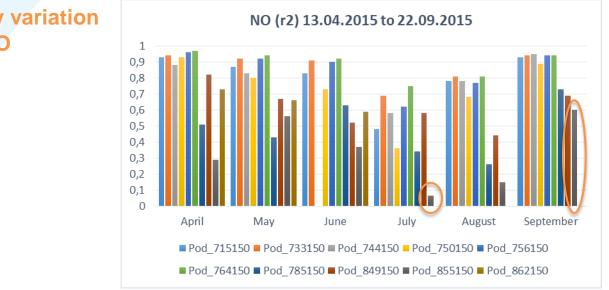
Implementation

AQMesh performance evaluation

24 AQMesh platforms field co-location results 13 April to 24 June 2015

	 2				
_	R ²	NO2	03	NO	СО
	688150	0.42	0.65	0.92	0.34
	712150	0.31	0.3	0.78	0.36
	715150	0.13	0.27	0.91	0.41
	718150	0.24	0.53	0.62	0.32
	733150	0.23	0.15	0.93	0.38
	737150	0.23	0.57	0.94	0.34
	743150	0.16	0.5	0.95	0.41
	744150	0.35	0.048	0.86	0.27
	746150	0.21	0.6	0.68	0.39
	750150	0.22	0.61	0.87	0.42
	755150	0.29	0.49	0.84	0.39
	756150	0.13	0.23	0.94	0.37
	764150	0.045	0.0088	0.95	0.39
	785150	0.28	0.19	0.36	0.25
	828150	0.062	0.16	0.75	0.35
	846150	0.51	0.24	0.63	0.45
	849150	0.3	0.3	0.75	0.34
	850150	0.38	0.26	0.53	0.43
	855150	0.32	0.29	0.41	0.22
	856150	0.37	0.27	0.55	0.35
	861150	0.28	0.49	0.73	0.35
	862150	0.28	0.3	0.67	0.34
_	863150	0.18	0.31	0.74	0.36
	864150	0.091	0.1	0.74	0.43

In bold $r^2 \ge 0.5$


 $\begin{array}{c} \mbox{R}^2 > 0.5 & \mbox{NO}_2: 1 \mbox{ unit} \\ \mbox{O}_3: 8 \mbox{ units} \\ \mbox{NO}: 22 \mbox{ units} \\ \mbox{CO}: 1 \mbox{ unit} \end{array}$

AQMesh performance evaluation: variability

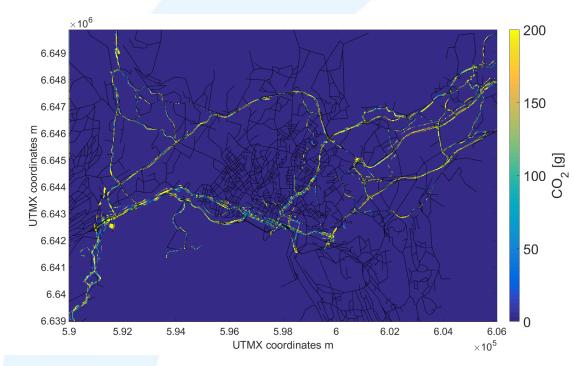
The performance of the sensors varies with:

- 1. The location (background / traffic).
 - Lower performance in background stations for NO.
 - Improved performance in background stations for PM10 and PM2.5 ٠
- 2. The meteorological conditions
 - Variation month to month in r², gradient and offset

Monthly variation r² for NO

Sensors mounted on buses

Air Quality Platform


- NO₂ and CO
- Internal T and RH
- Time Stamp

On Board System

- Speed and fuel consumption
- GPS
- Time Stamp

High-resolution CO₂ emission maps

Sensors mounted on bikes, strollers, backpacks

- NO_2/O_3
- Time stamp

DunavNET

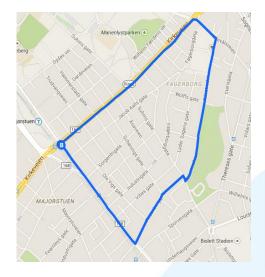
- NO_2 , NO, O_3
- Time stamp
- GPS

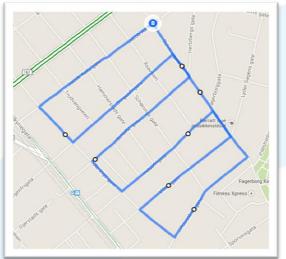
Ateknea

- NO₂, NO, O₃
- Time stamp
- GPS (Bluetooth)

TSI Dusttrack

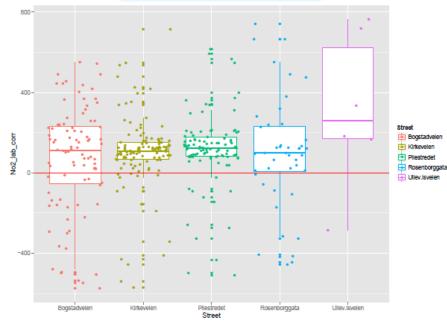
- PM10, PM2.5
- Time stamp

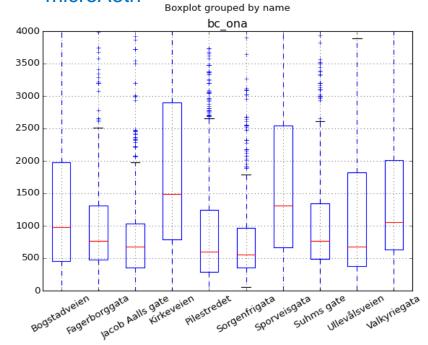


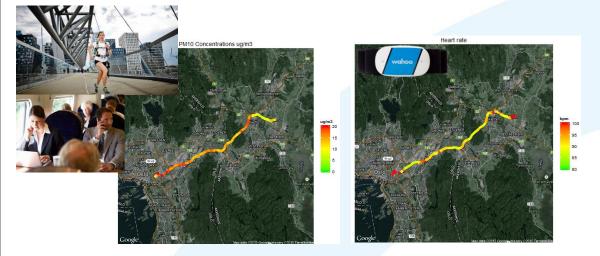

microAeth AE51

- Black Carbon
- Time stamp

NILU

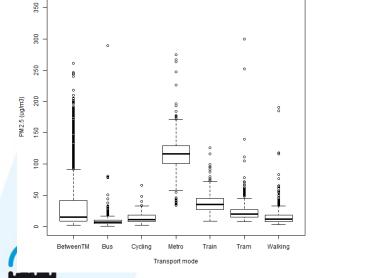

Mapping air pollution with mobile sensors



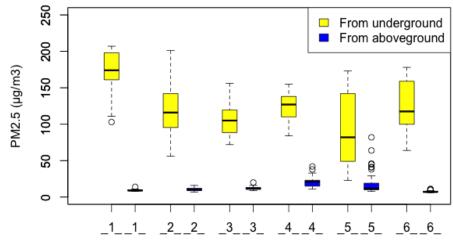

AQ e-bike: DunavNET

microAeth

Personal exposure estimates



Personal exposure


Wearable sensors + Smartphone The data collected by the sensor is combined with GPS data to estimate exposure +Heart rate monitor

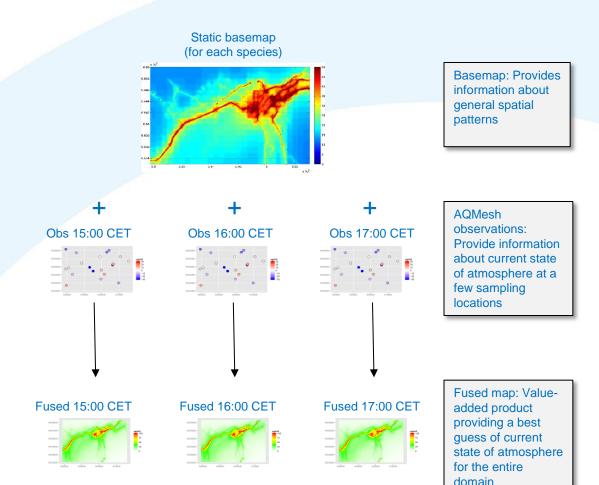
Inhaled dose can be estimated if we know the subject's heart rate

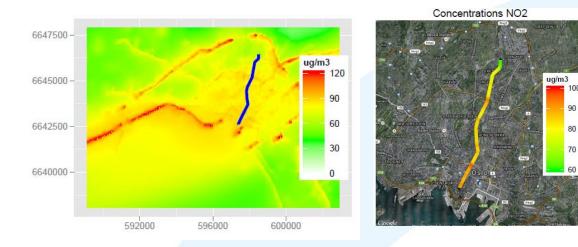
NILU

Metro Lines

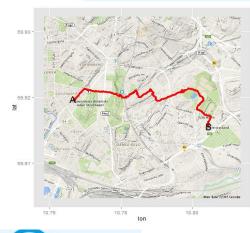
Sensors mounted in kindergartens

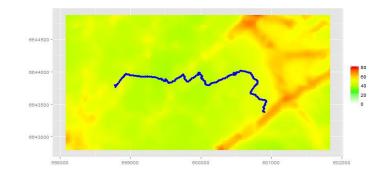
AQMesh Sensor


- NO, NO₂, O₃, CO, OPC (PM₁₀, PM_{2.5})
- Noise
- Temperature, Pressure, RH
- Time Stamp


Mapping of urban AQ: data fusion model + sensor

- A static basemap is created for each location and each species of interest to show the longterm spatial patterns
- This basemap is then modified according to the observations made by the static AQMesh sensors
- This is essentially a locationdependent level-shift of the basemap
- The final result are hourly maps with the current best guess for the NO₂/PM₁₀/PM_{2.5} concentration field

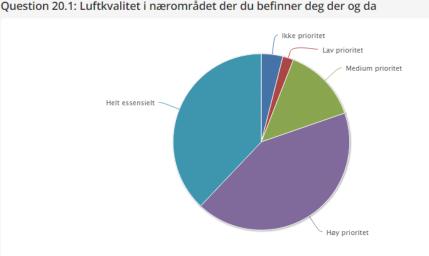

Indirect personal exposure estimates



The concentrations are extracted from the up-to-date concentration map and combined with GPS data (i.e. from mobile phone).

Inhaled dose can also be estimated if the subject is carrying a heart rate monitor

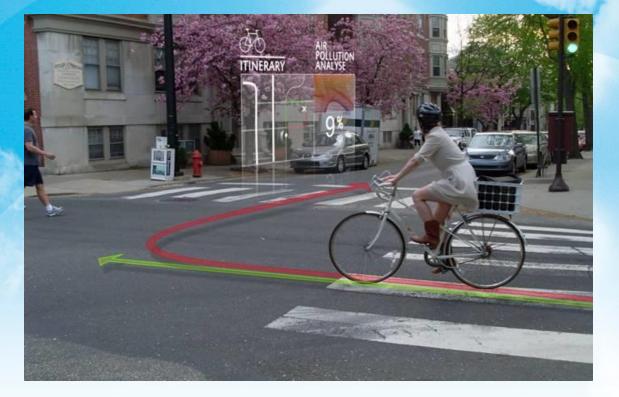
User can also plan routes and obtain the concentration along that route.



100

Conclusions

- Crowdsourcing and low-cost sensor technologies systems offer the possibility to enhance existing monitoring networks.
- Data fusion techniques provide an automated, operational, near-real-time system for mapping the observations onto a spatial grid.
- Wearable air quality sensors have potential to provide personal exposure/dose estimates.
- Challenges include precision and accuracy of the low-cost sensors measurements.
- People is interested in receiving air quality information where they are!
- Low-cost sensors offer the possibility to engage citizens in AQ monitoring and contribute to create more awareness about air pollution issues.



Results from the survey on AQ Perception.

Thank you for your attention

Nuria Castell ncb@nilu.no

