European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir*

COST Action TD1105

4th International Workshop *EuNetAir* on *Innovations and Challenges for Air Quality Control Sensors* FFG - Austrian Research Promotion Agency - Austrian COST Association Vienna, Austria, 25 - 26 February 2016

FUNCTIONALIZATION OF CARBON NANOMATERIALS: TOWARDS DEVICES FOR THE MOLECULAR RECOGNITION OF AROMATIC COMPOUNDS IN THE ENVIRONMENT

Eduard Llobet

Sub-WG Leader: Carbon nanomaterials

eduard.Llobet@urv.cat

Universitat Rovira i Virgili / Spain

Outline

- Towards molecular recognition
 - Functionalization of CNTs with:
 - Deep cavitands
 - Long-chain mercaptans
- Sensor preparation
- Results on the detection of aromatic and nonaromatic VOCs
- Conclusions and outlook

Towards molecular recognition

Carbon nanomaterials (CNMats) exhibit largely unspecific interactions with gas molecules

But also...

reversible conductivity changes upon gas exposure, even when operated at room temperature

Strategy: Use CNMats as 'transducer' element and leave the recognition part to complex molecules grafted to their surface.

Towards molecular recognition

Functionalization of CNTs with:

- Quinoxaline walled, deep cavitands (which have been reported as absorbents for aromatics)

- Long-chain mercaptans with terminal carboxyl (hydrophilic) or alkyl (hydrophobic) groups.

In our case we implement this via a SAM technique

Air-brushing of CNTs dispersed on a suitable solvent onto a heated substrate. Film resistance monitored for reproducibility

P. Clément, E. Llobet, et al. Sensors and Actuators B 182 (2013) 344- 350

CARBON 78 (2014) 510-520

Polymeric

*O*₂

Feato PCCE 0 0 Х RF MB PS Plasma treatment and evaporation or sputtering

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

R. Leghrib, E. Llobet, et al., Nanotechnology 20 (2009) 375501

Au-CNT

Functionalisation with deep-cavitands

Functionalisation with deep-cavitands

Functionalisation with deep-cavitands: Results

Functionalisation with long-chain mercaptans

A. Thamri, E. Llobet. et al., Submitted, **2016**.

16 Mercaptohexadecanoic acid (MHDA)

HSCH₂(CH₂)₁₃CH₂

Functionalisation with long-chain mercaptans

XPS: Survey spectrum of the MWCNT/Au/MHDA gas-sensitive nanomaterial

Functionalisation with long-chain mercaptans

FT-IR spectrum of a film consisting of 16-mercaptohexadecanoic acid deposited on MWCNs/Au.

Functionalisation with long-chain mercaptans: Results

Detection results: deep cavitands vs. MHDA

Detection results: deep cavitands vs. MHDA

Conclusions and outlook

• CNTs enable the detection of a-VOCs with sensors that can be fully operated at room temperature.

• Functionalisation with SAMs of macromolecules helps dramatically increasing sensitivity and promotes selectivity.

• Changing the length of the chain molecule and the nature of the terminal functional group (hydrophilic/ hydrophobic) should bring about new functionalities to the nanohybrid material.

Acknowledgements

P. Ballester, ICIQ, Spain
A. Abdelghani, INSAT, Tunisia
C. Bittencourt, UMONS, Belgium
P. Umek, JSI, Slovenia
C. Cané, I. Gràcia, IMB-CNM-CSIC, Spain
D. Briand, N. de Rooij, EPFL, Switzerland

Funded by:

- ICREA Academia Award
- MINECO grant no. TEC2012-32420
- NATO under the Science for Peace Programme grant no. SPS 984511
- Autonomous Government of Catalonia grant no. 2014 SGR 1267.
- European Science Foundation grant COST TD-1105 'EuNetAir'
- European Commission, H2020 Project 'TROPSENSE'

European Network on New Sensing Technologies for Air-Pollution Control and Environmental Sustainability - CuNetAir

