European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir*

COST Action TD1105

4th International Workshop *EuNetAir* on *Innovations and Challenges for Air Quality Control Sensors* FFG - Austrian Research Promotion Agency - Austrian COST Association Vienna, Austria, 25 - 26 February 2016

DEVELOPING AIR QUALITY SENSORS BY LASER DEPOSITION ON GRAPHENE

Raivo Jaaniso

MC Member

raivo.jaaniso@ut.ee University of Tartu / Estonia

Outline

- Motivation
- Fabrication of graphene sensors
- Sensibilisation by PLD (pulsed laser deposition)
- Benchmarking NO₂ sensors
- Explorations for other gases
- Conclusions

Motivation

- High potential of <u>graphene</u> fully exposed to environment; responses to single gas molecules have been demonstrated
- For unlocking the potential of graphene new approaches are required for increasing the sensitivity in <u>real atmospheric</u> <u>measurements</u> and for making the devices selective to <u>different</u> <u>target gases</u>
- A fruitful technique is the <u>sensibilisation</u> of single layer graphene by pulsed laser deposition (PLD). Depending on PLD target material and process parameters, adsorption centres with different properties can be created at the defects, impurities, and phase boundaries.

CVD growth of graphene

Fabrication of sensors

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Pristine CVD graphene

In ambient conditions the response is almost absent or <1% level

Sensibilisation by pulsed laser deposition (PLD)

- Target can be any solid material
- Particle kinetic energies can be varied between 0.025 and ~1000 eV
- Typical deposition rates -1% of a monolayer per laser pulse

PLD facility

KrF laser

- 248 nm
- 25 ns
- 1 50 Hz
- 2-7 mJ/cm²

Process control by ellipsometry and plasma spectrometry

PLD processes

The process was carried out in

- vacuum (<10⁻⁶ mbar)
- oxygen or nitrogen gas at 10⁻²...5x10⁻² mbar

Number of laser pulses 1...3000

Deposition materials (targets):

- Oxides (NiO, ZrO_2 , SnO_2 , TiO_2 , V_2O_3)
- Metals (Ag, Au, Pd, Ru)

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Raman spectra

P=10⁻⁶ mbar

P=10⁻² mbar

From single defects to porous nanostructures

Graphene/ZrO₂

NO₂ in air at RT

~50 times higher response after PLD

Stability of NO₂ sensor on graphene/PLD(TiO₂)

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Benchmarking (I)

14

Benchmarking (II)

Highly selective: responses <1% for CO (100 ppm) and SO₂ (5 ppm)

Increased sensitivity towards NO₂ was obtained in case of all PLD targets/processes tested. Look at electron affinities:

- NO₂ 2.273 eV
- SO₂ 1.107 eV
- O₂ 0.45 eV

Any hope for other gases?

Sensing NH₃ with graphene/PLD(SnO₂)

Responses to different gases

Oxide/Gas	NO ₂	NH ₃	СО	SO ₂
TiO ₂	Х	х	0	0
SnO ₂	х	Х	0	X*
V ₂ O ₃	x	х	Х	х

0 – response (almost) absent, x – 'normal' response, X - largest response. X* - sensor made by 2-stage deposition.

The gas concentrations were typically at 100 ppb level for NO_2 and SO_2 and at 10 ppm level for CO and NH_3 .

Sensing CO with graphene/PLD(V₂O₃)

Sensing SO₂ with graphene/PLD(SnO₂)

2-stage PLD:

 6 high energy pulses – defects with average distance ~4 nm

2) 3000 low energy pulses (in background gas) – ~10 nm thick porous coating

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

CONCLUSIONS

Main achievements:

- Graphene/PLD NO₂ sensors
 - Prototypes fabricated, calibrated, benchmarked
 - Small influence of humidity
 - Stable over 5 months
- Potential for other gases (NH₃, CO, SO₂) demonstrated (for specific PLD targets and process parameters)

open PROBLEMS:

- Understanding the factors behind selectivity!
- New (simpler) fabrication routes?

Collaborators and support

Group of Sensor Technologies

- Dr. Tea Avarmaa
- Dr. Margus Kodu
- Artjom Berholts (PhD student)

Lab of Thin Film Technology

- Dr. Harry Alles
- Dr. Ahti Niilisk
- Tauno Kahro (PhD student)

Grant support is acknowledged from Estonian Research Council (IUT34-27, IUT2-24) and Graphene Flagship.

