European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir*

COST Action TD1105

4th International Workshop *EuNetAir* on *Innovations and Challenges for Air Quality Control Sensors* FFG - Austrian Research Promotion Agency - Austrian COST Association Vienna, Austria, 25 - 26 February 2016

"Environmental Sensors and Miniaturization"

Martin Schrems Vice President Technology R&D Martin.Schrems@ams.com ams AG Austria

ESF provides the COST Office

About ams

Shaping the world with sensor solutions

Focus

- Designing and manufacturing advanced
 analog sensor solutions
- Markets: communications, consumer, industrial, automotive and medical
- Solutions: intelligent light sensors, CIS, RFID/NFC, chemical sensors, active-noisecancelling ICs, position sensors, ultra-low power management, and more
- Standard products & custom solutions (ASICs & foundry services)

People:

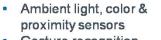
- More than 2,100 employees in 20 countries
- 18 design centers
- 20 sales offices
- 30+ channel partners

Manufacturing

- IDM with 30+ years of experience
- Advanced processes: CMOS, HV-CMOS and SiGe, 3D TSV
- Certified for automotive & medical production
- Full service foundry including packaging and testing options
- 8 inch wafer fab in Austria (180k wspa)
- Test facility in Calamba, Philippines
- Strong relationships with global manufacturing partners

Financials

- Revenues 2015 EUR623m/\$691m (2014: EUR 464m/\$614m)
- Revenues Q4 2015 EUR147m/\$161m (Q4 2014: EUR139m/\$141m)


am

The world of sensors

Smart Phones & Tablet

Wearables

- Gesture recognition
- NFC-based contactless payment solutions
- Environmental sensors
- Active Noise Cancellation
- Spectral sensors
- Biosensors, heart rate monitoring
- Power management
 NFC-based contactless payment solutions
- Active Noise Cancellation
- Environmental sensors

Smart Home & Buildings

- Gas sensors
- Temperature sensors
- Smart light sensors
- Humidity sensors
- Pressure sensors
- Flow sensors
- Lightning sensors

- Position sensors
- Sensors for advanced
 driver assistance
- Air quality sensors
- Hydrogen sensors

Industrial

Automotive

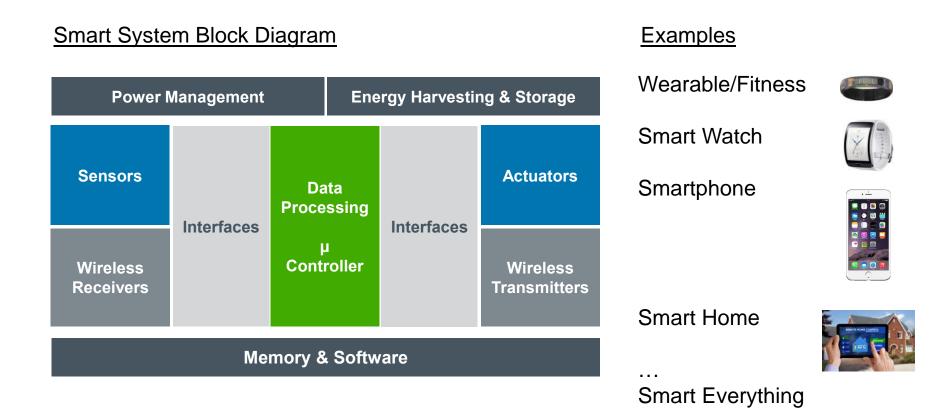
- Position sensors
- CMOS sensors for machine vision and drones
- Industrial/building automation
- Flow sensors (Heat, Water, Gas Metering)
- NFC Sensor Tags
- Image Sensors for:
 - Computed tomography
 - Digital x-ray
 - Ultrasound
 - Surgical robots
- CMOS image sensors for endoscopy (miniature cameras)

Medical

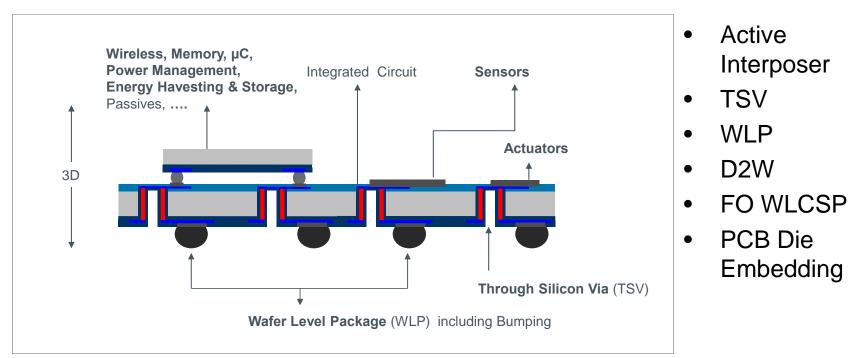
Confidential © ams AG 2016 Page 3

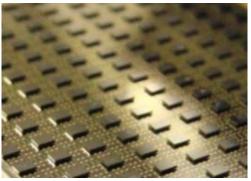
Overview

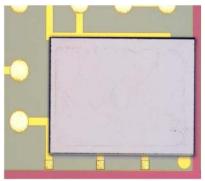
- 1. Sensors and Smart Systems
- 2. Environmental Sensor Market Needs and Applications
- 3. Environmental Sensors and Technologies
- 4. Miniaturization
- 5. Conclusions

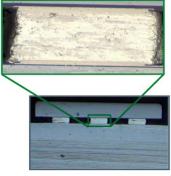


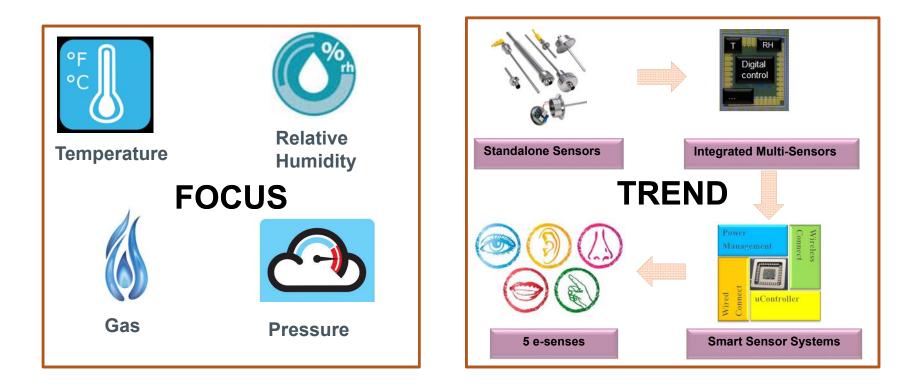
- 1. Sensors and Smart Systems
- 2. Environmental Sensor Market Needs and Applications
- 3. Environmental Sensors and Technologies
- 4. Miniaturization
- 5. Conclusions




Smart Systems




Miniaturized Smart Systems



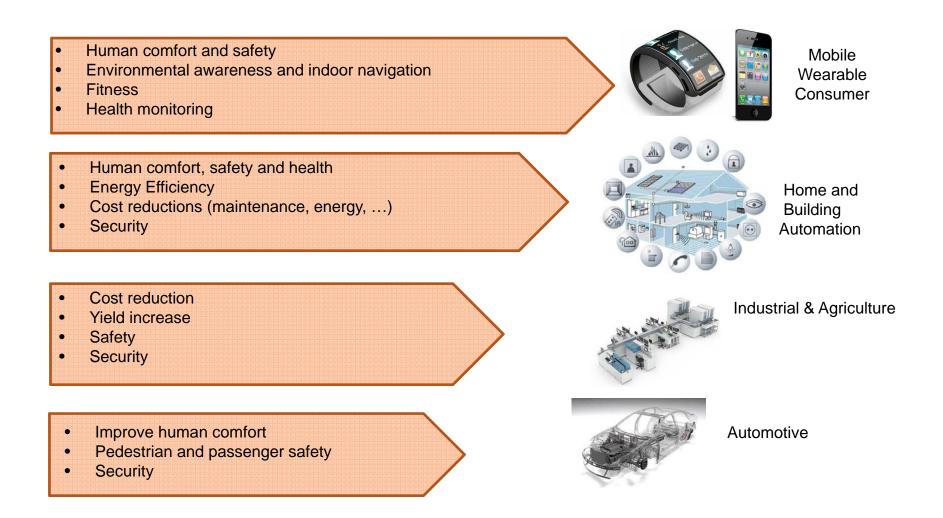
Source: F.Schrank et al. (2015)

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Environmental Sensors

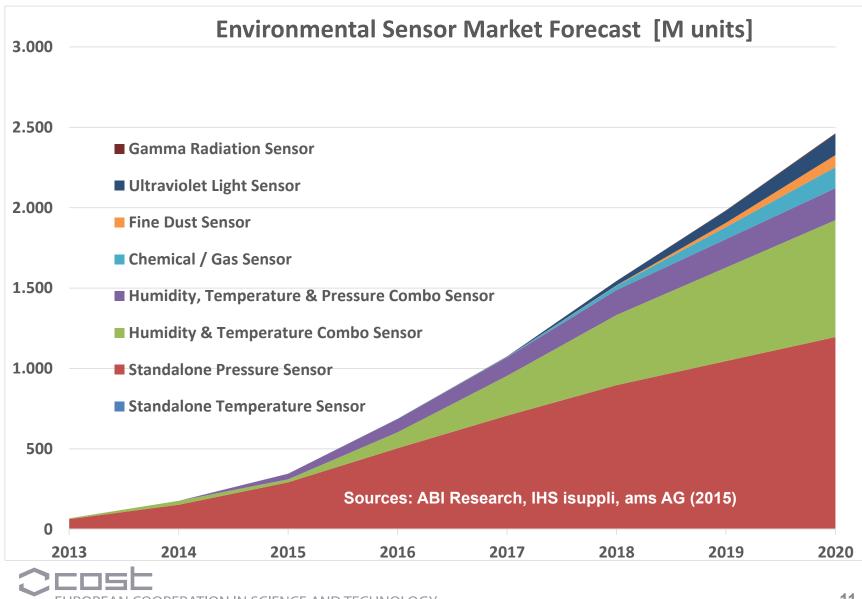
- Provide environmental information to people
- > EM radiation, sound, pressure, temperature, gas, particles

Overview

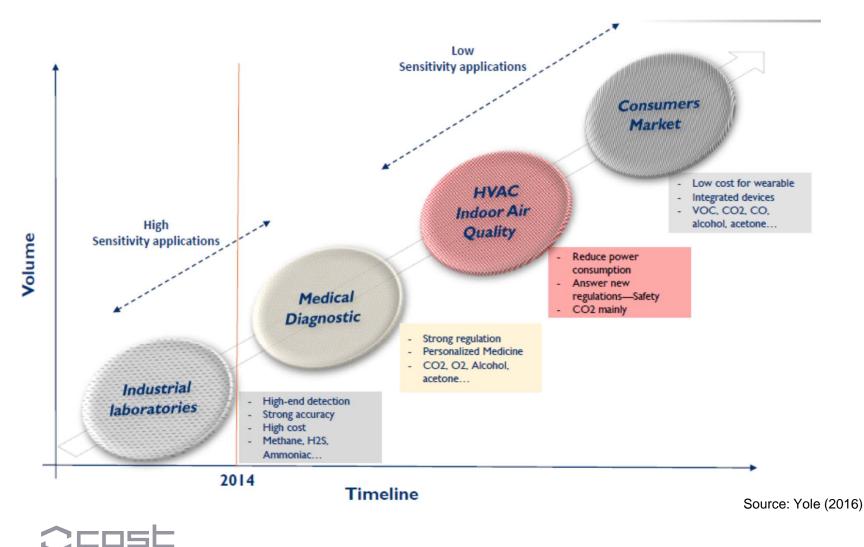

1. Sensors and Smart Systems

2. Environmental Sensor Market Needs and Applications

- 3. Environmental Sensors and Technologies
- 4. Miniaturization
- 5. Conclusions



Market Drivers



Environmental Sensor Market

OOPERATION IN SCIENCE AND TECHNOLOGY

Gas Sensor Applications

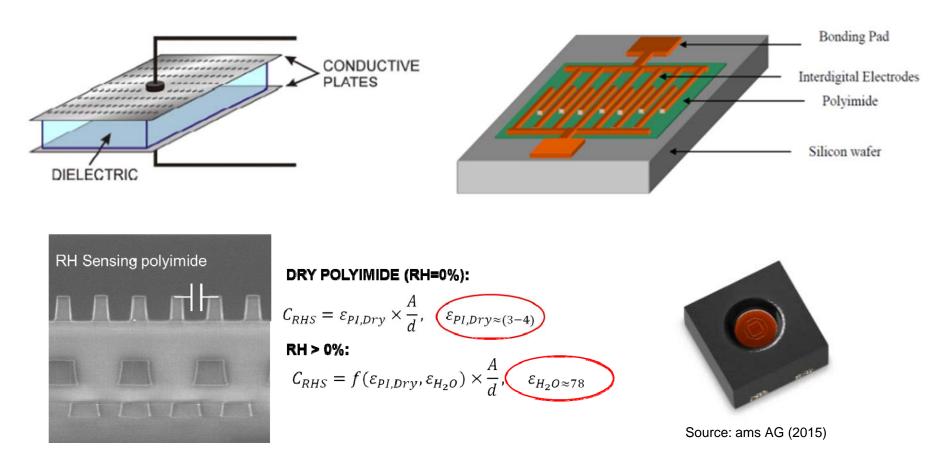
EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Overview

- 1. Sensors and Smart Systems
- 2. Environmental Sensor Market Needs and Applications
- 3. Environmental Sensors and Technologies
- 4. Miniaturization
- 5. Conclusions

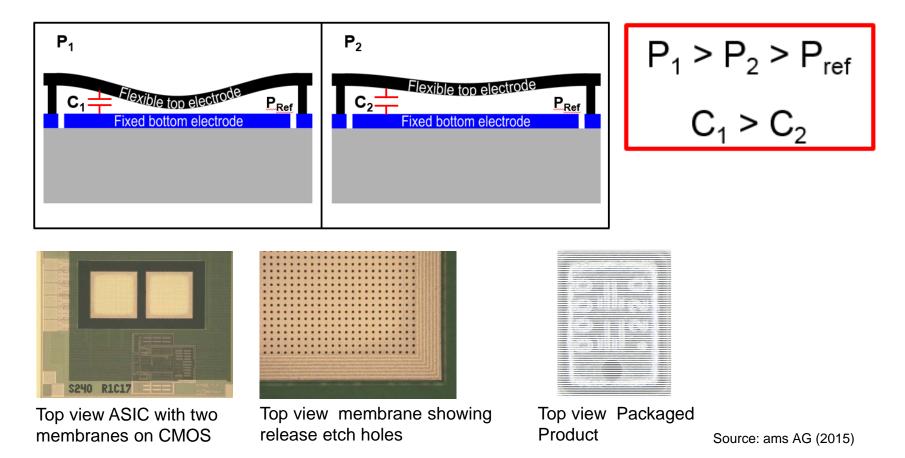
Temperature

CMOS-based design block (Bandgap)

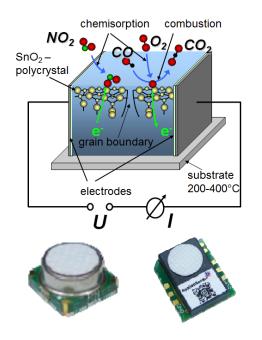

Specification Limits

Source: ams AG (2015)

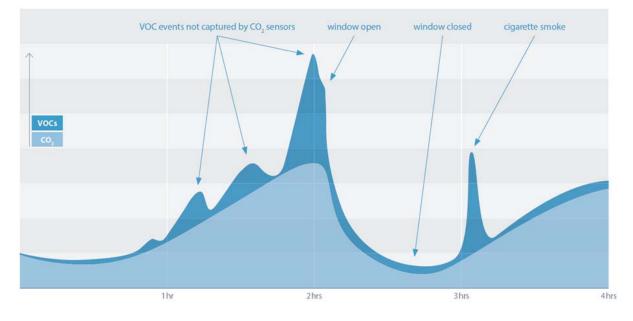
EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY


Humidity

• SoC integrated humidity sensor (CMOS postprocessing)



Pressure


• SoC integrated pressure sensor (CMOS postprocessing)

Volatile Organic Compounds


CO, and VOCs from business meeting session

Source: ams AG (2015)

Gas Sensor Trends

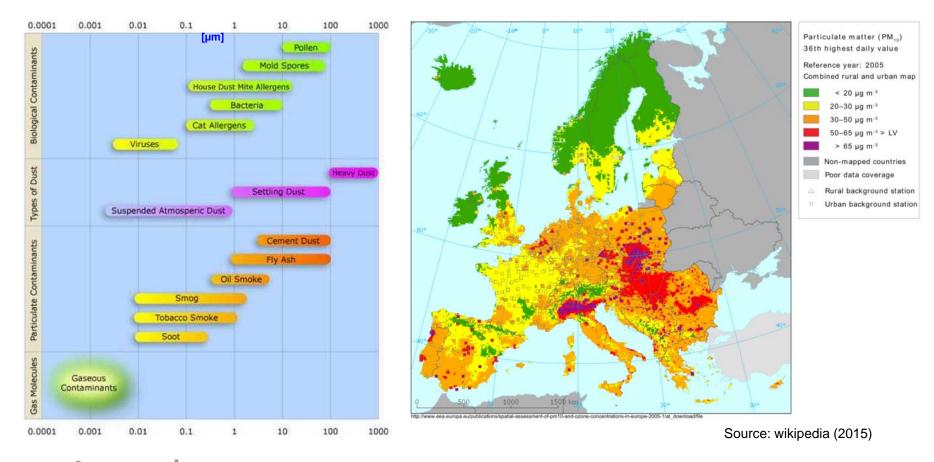
18

Gas Sensor Technologies

Gas sensing technologies	Principles	Chip size	Power consumption	ASP
NDIR	IR light passes through the gas & an IR detector measures the transmitting light (MWIR is used to detect CO and CO2)	• ~ cm² range	 100s mW for pyro (3.5 mW for COZIR from GSS) 50µW with PD 	 For CO2 HVAC: \$30- \$80 Target ASP for wearable applications: \$2-\$3
FTIR	An FTIR spectrometer simultaneously collects high spectral resolution data over a wide spectral range (different of NDIR which has narrow range of wavelengths).	• many cm ²	• 150–300 W	• \$1000s
Holographic	Uses a DOE with gratings, lens, splitters for higher accuracy & multiple gas detection (Optosense)	 ~ 10x10 mm² 	• mW	• \$100-\$500
Electrochemical	Electrochemical reaction between sensing & counter electrodes creates a current proportional to target gas concentration	• ~ 20 mm²	 100s µW range 	• \$20
Printed electrochemical	Same as above but using screen printing technology	• 15x15x3 mm ³	 Zero (based on energy harvesting) 	• <\$1 target
MOS	Gas absorption at the surface of heated oxide (200–250°C) that results in change of electrical resistance related to sample gas concentration	• 3.2 x 2.5 x 0.99 (mm3)	 I-10s of mWs range 	 \$2 for very high volume to \$60 for industrial applications MEMS technology could achieved \$0.20 (SGX)

Source: Yole (2016)

Gas Sensor Technologies contd.

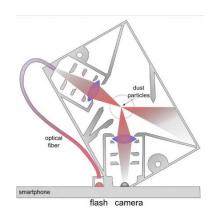

Gas sensing technologies	Principles	Chip size	Power consumptio n	ASP
Catalytic/Pellistor	Resistance change through the increase of temperature of a Pt wire impregnated with a catalyst (thus promoting oxidation) compared to a second Pt wire with no oxidation.	• ~ 1mm long	 10–100s mW range 	• \$40–\$60 (SGX)
Acoustic/Photo- acoustic	Photoacoustic spectroscopy is the measurement of the effect of absorbed light by means of acoustic detection. The absorption depends on the wavelength. A microphone is used for detection.	• ~cm ² range	• W range	• >\$1500
ChemFET	Structure is similar to a MOSFET with an electrode replaced by a chemically sensitive membrane. There is NO heating compared to MOSFET.	• ~mm²	 10s of mW range 	• Est < \$10
Resonant	Quartz resonators sensitive to adsorbed gas species	A few mm ²	• Low (few mW)	 Est a few \$ (a SAW filter is \$0.10-\$0.25)
PID / GC	Photo-ionization (e.g., UV) breaks molecules into positive ions. The gas becomes electrically charged and the ions produce an electric current, which is the signal output of the detector.	 Miniaturized system: 1 liter size (APIX) 	 1000W (lab tool) 	 From \$50k (3 gases) to \$150k (13 gases) Portable system cost: a few \$100s is targeted
Chemiluminescence	Emission of light as the result of a chemical reaction.	 Not miniaturized 	• 100s W	• \$10k to \$15k

Source: Yole (2016)

Fine Dust

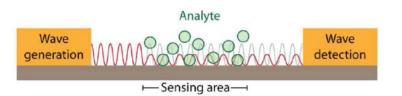
• Fine Particles (< 2.5μm, < 10μm) pose health hazards (cancer,..)

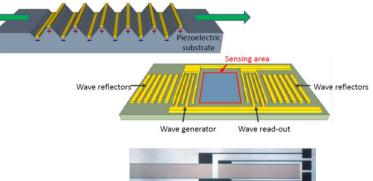
EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY


Fine Dust Sensors

Optical ~ m³

Fine Dust Measurement Station


Optical ~ cm³

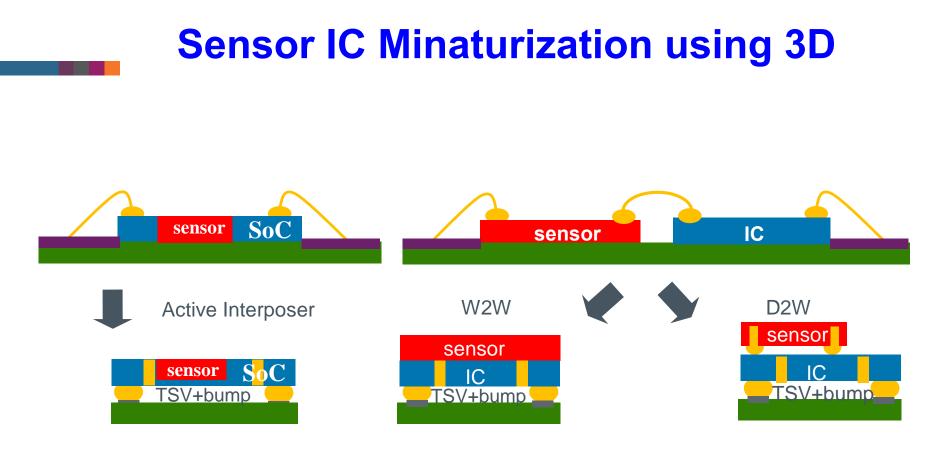


Optical Fine Dust measurement using Mobile phone functions (Budde et al. (2013))

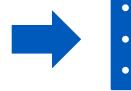
MEMS $\sim mm^3$

Film Bulk Acoustic wave Resonator (FBAR)

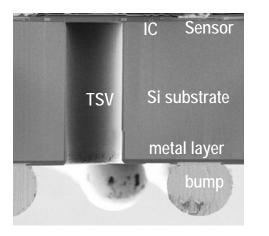
Fine Dust measurement e.g. by SAW / FBAR (S.Thomas et al. (2013))


Overview

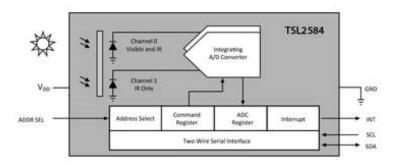
- 1. Sensors and Smart Systems
- 2. Environmental Sensor Market Needs and Applications
- 3. Environmental Sensors and Technologies


4. Miniaturization

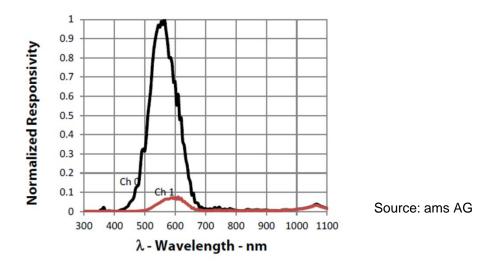
5. Conclusions



- System on Chip (SoC) with TSV and RDL
- Wafer to Wafer (W2W) bonding for matched sensor and IC die sizes
- Die to Wafer (D2W) bonding if sensor and IC die sizes do not match



- Form factor reduction
- System cost reduction
- Better performance

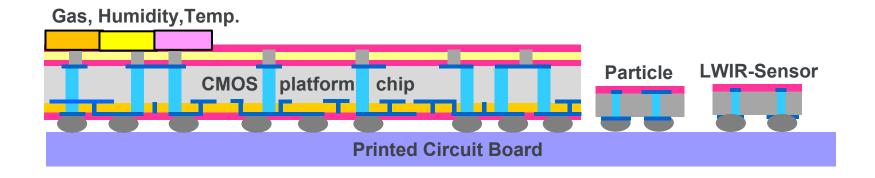

Light Sensor with 3D/TSV

- World's smallest Ambient Light Sensor
- Using 3D/TSV
- Height of only 0.218mm w/o bumps

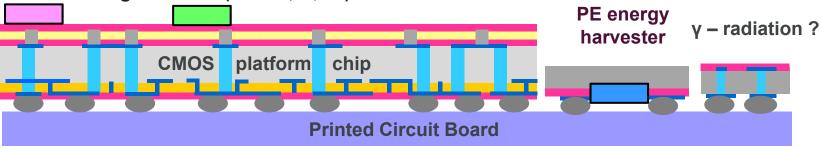
EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Benefits	Features
Approximates Human Eye Response	Dual Diode with Photopic Filter
Flexible Operation	Programmable Analog Gain and Integration Time
Suited for Operation Behind Dark Glass	• 1,000,000: 1 Dynamic Range
Low Operating Overhead	Programmable Upper and Lower Thresholds Programmable Persistence Filter
Low Power	 3.0 μA Sleep State
Industry Standard Two-Wire Interface	 I²C Fast Mode Compatible Interface Data Rates up to 400 kbit/s Input Voltage Levels Compatible with 1.8–V Bus
Ultra-Small Foot-Print	 1.145 mm x 1.660 mm TSV (Through Silicon Via) 0.218 mm Height w/o Solder Balls
Unlimited Manufacturing Floor Life	MSL1 Rated

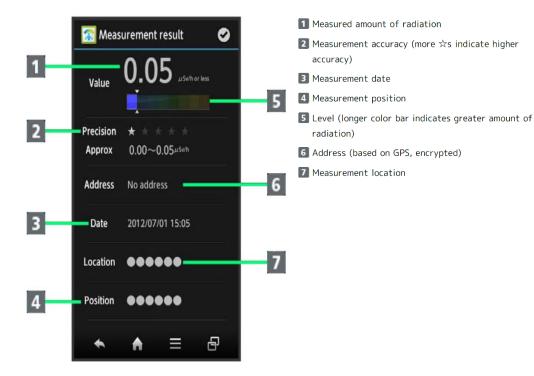
3D Gas Sensor IC


System on Chip (SoC) integration with 3D/TSV circuitry poly-silicon heater power consumption 9 mW μΗΡ 400 TSVs 300 7 [°C] ture 200 28 10 15 Electrical power Pel [mW] ╗<mark>╷╔╷╔_┪╔╶╓</mark>╔┍╝ THE eadou µ hotplate CMOS µ hotplate temp. control **TSVs**

Source: A.Nemecek et al., Semicon Europe (2014) ; ams AG



EU project "Multi-Sensor Platform"


• Ambition: Integration of multiple sensor functions

T- Sensor Light Sensor (RGBW,IR,UV)

Gamma Radiation

Sharp Pantone 5 107SH 0.05µSv/h (min) (dedicated semiconductor sensors 2x100mm2) Source: Sharp (2012)

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

iPhone 4s using camera covered with black tape & SW app 1µSv/h (min) Source: ansto (2014)

CONCLUSIONS

- Sensors for environmental parameters such as gas, humidity, temperature and pressure as well as EM radiation have become available with increasingly smaller form factors.
- Chemical and fine dust sensing are particular areas where further R&D is needed for identifying the optimum sensing technologies with respect to sensitivity, size and cost.
- Cost reduction and the use of small form factor mobile devices drive the further miniaturization of sensors and electronics as well as the combination of multiple sensor functions
- Miniaturization is enabled by recently developed Wafer Level Packaging and 3D integration technologies with Through Silicon Vias and Die to Wafer Stacking
- Not all sensing parameters need dedicated sensors (T, gamma)
 CELE
 EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Gas Sensing Technologies

• XXX

Technology	Principle	Output	
Optical detection (FTIR, NDIR, photoacoustic)	It is based on wavelength absorption of the gas: NIR to MVVIR sources are used for IR sensing; UV source is used for photo acoustic.	A shift in wavelength is measured, correlated to the target gas.	
Calorimetric/Pellistor	It is based on burning target gases (it is mainly for combustible gases).	A shift in temperature/resistance is measured.	
Electro chemical	It is based on a RedOx chemical reaction between sensor electrodes.	Current intensity is measured.	
Metal Oxide Semiconductor	It is mainly based on gas adsorption at the sensor surface.	A resistance change is measured.	
ChemFET	It is based on a change in mass/dielectric properties of a specific layer.	A change in mass/dielectric constant is measured.	
Acoustic	It is based on the measure of travel time of ultrasound at a given distance to calculate propagation velocity of ultrasonic waves. Concentration is linked to velocity.	Gas velocity is measured.	
Chromatography	Gas is electrically charged.	Output is electrical current.	
Chemiluminescence	Chemiluminescence (sometimes "chemoluminescence") is the emission of light (luminescence), as the result of a chemical reaction.	Output is light.	